These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 12100581)
1. Protective agents used to reverse the metabolic changes induced in wine yeasts by concomitant osmotic and thermal stress. Caridi A Lett Appl Microbiol; 2002; 35(2):98-101. PubMed ID: 12100581 [TBL] [Abstract][Full Text] [Related]
2. Optimization of fermentation-relevant factors: A strategy to reduce ethanol in red wine by sequential culture of native yeasts. Maturano YP; Mestre MV; Kuchen B; Toro ME; Mercado LA; Vazquez F; Combina M Int J Food Microbiol; 2019 Jan; 289():40-48. PubMed ID: 30196180 [TBL] [Abstract][Full Text] [Related]
3. Concentration effect of Riesling Icewine juice on yeast performance and wine acidity. Pigeau GM; Bozza E; Kaiser K; Inglis DL J Appl Microbiol; 2007 Nov; 103(5):1691-8. PubMed ID: 18038457 [TBL] [Abstract][Full Text] [Related]
4. Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation. Domizio P; Romani C; Lencioni L; Comitini F; Gobbi M; Mannazzu I; Ciani M Int J Food Microbiol; 2011 Jun; 147(3):170-80. PubMed ID: 21531033 [TBL] [Abstract][Full Text] [Related]
5. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301 [TBL] [Abstract][Full Text] [Related]
6. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Comitini F; Gobbi M; Domizio P; Romani C; Lencioni L; Mannazzu I; Ciani M Food Microbiol; 2011 Aug; 28(5):873-82. PubMed ID: 21569929 [TBL] [Abstract][Full Text] [Related]
7. Towards an understanding of the adaptation of wine yeasts to must: relevance of the osmotic stress response. Jiménez-Martí E; Gomar-Alba M; Palacios A; Ortiz-Julien A; del Olmo ML Appl Microbiol Biotechnol; 2011 Mar; 89(5):1551-61. PubMed ID: 20941492 [TBL] [Abstract][Full Text] [Related]
8. Use of grape racemes from Grillo cultivar to increase the acidity level of sparkling base wines produced with different Saccharomyces cerevisiae strains. Alfonzo A; Francesca N; Mercurio V; Prestianni R; Settanni L; Spanò G; Naselli V; Moschetti G Yeast; 2020 Sep; 37(9-10):475-486. PubMed ID: 32548881 [TBL] [Abstract][Full Text] [Related]
10. Influence of Lachancea thermotolerans on cv. Emir wine fermentation. Balikci EK; Tanguler H; Jolly NP; Erten H Yeast; 2016 Jul; 33(7):313-21. PubMed ID: 27113383 [TBL] [Abstract][Full Text] [Related]
11. Growth and metabolism of non-Saccharomyces yeasts isolated from Washington state vineyards in media and high sugar grape musts. Aplin JJ; White KP; Edwards CG Food Microbiol; 2019 Feb; 77():158-165. PubMed ID: 30297046 [TBL] [Abstract][Full Text] [Related]
12. Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Rantsiou K; Dolci P; Giacosa S; Torchio F; Tofalo R; Torriani S; Suzzi G; Rolle L; Cocolin L Appl Environ Microbiol; 2012 Mar; 78(6):1987-94. PubMed ID: 22247148 [TBL] [Abstract][Full Text] [Related]
13. Influence of Williopsis saturnus yeasts in combination with Saccharomyces cerevisiae on wine fermentation. Erten H; Tanguler H Lett Appl Microbiol; 2010 May; 50(5):474-9. PubMed ID: 20214731 [TBL] [Abstract][Full Text] [Related]
14. Evidence of different fermentation behaviours of two indigenous strains of Saccharomyces cerevisiae and Saccharomyces uvarum isolated from Amarone wine. Tosi E; Azzolini M; Guzzo F; Zapparoli G J Appl Microbiol; 2009 Jul; 107(1):210-8. PubMed ID: 19245401 [TBL] [Abstract][Full Text] [Related]
15. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae. Curiel JA; Salvadó Z; Tronchoni J; Morales P; Rodrigues AJ; Quirós M; Gonzalez R Microb Cell Fact; 2016 Sep; 15(1):156. PubMed ID: 27627879 [TBL] [Abstract][Full Text] [Related]
16. The vinification of partially dried grapes: a comparative fermentation study of Saccharomyces cerevisiae strains under high sugar stress. Malacrinò P; Tosi E; Caramia G; Prisco R; Zapparoli G Lett Appl Microbiol; 2005; 40(6):466-72. PubMed ID: 15892744 [TBL] [Abstract][Full Text] [Related]
17. Reduction of volatile acidity of wines by selected yeast strains. Vilela-Moura A; Schuller D; Mendes-Faia A; Côrte-Real M Appl Microbiol Biotechnol; 2008 Oct; 80(5):881-90. PubMed ID: 18677471 [TBL] [Abstract][Full Text] [Related]
18. Evolution of microbiological and chemical parameters during red wine making with extended post-fermentation maceration. Francesca N; Romano R; Sannino C; Le Grottaglie L; Settanni L; Moschetti G Int J Food Microbiol; 2014 Feb; 171():84-93. PubMed ID: 24334093 [TBL] [Abstract][Full Text] [Related]
19. Effect of refermentation conditions and micro-oxygenation on the reduction of volatile acidity by commercial S. cerevisiae strains and their impact on the aromatic profile of wines. Vilela-Moura A; Schuller D; Falco V; Mendes-Faia A; Côrte-Real M Int J Food Microbiol; 2010 Jul; 141(3):165-72. PubMed ID: 20626097 [TBL] [Abstract][Full Text] [Related]
20. Use of two osmoethanol tolerant yeast strain to ferment must from Tempranillo dried grapes: effect on wine composition. López de Lerma N; Peinado RA Int J Food Microbiol; 2011 Jan; 145(1):342-8. PubMed ID: 21215485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]