These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12100593)

  • 1. Optimization of carbon and nitrogen sources for phytase production by Mitsuokella jalaludinii, a new rumen bacterial species.
    Lan GQ; Abdullah N; Jalaludin S; Ho Y
    Lett Appl Microbiol; 2002; 35(2):157-61. PubMed ID: 12100593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Culture conditions influencing phytase production of Mitsuokella jalaludinii, a new bacterial species from the rumen of cattle.
    Lan GQ; Abdullah N; Jalaludin S; Ho YW
    J Appl Microbiol; 2002; 93(4):668-74. PubMed ID: 12234350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitsuokella jalaludinii sp. nov., from the rumens of cattle in Malaysia.
    Lan GQ; Ho YW; Abdullah N
    Int J Syst Evol Microbiol; 2002 May; 52(Pt 3):713-718. PubMed ID: 12054230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of freeze-dried Mitsuokella jalaludinii culture and Natuphos(®) phytase supplementation on the performance and nutrient utilisation of broiler chickens.
    Lan G; Abdullah N; Jalaludin S; Ho YW
    J Sci Food Agric; 2012 Jan; 92(2):266-73. PubMed ID: 21796639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced phytase production from Achromobacter sp. PB-01 using wheat bran as substrate: prospective application for animal feed.
    Kumar P; Chamoli S; Agrawal S
    Biotechnol Prog; 2012; 28(6):1432-42. PubMed ID: 22915503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of culture conditions on production of phytase by Zygosaccharomyces baili var. balil.
    Lata S; Rastogi S; Kapoor A; Imran M
    J Environ Biol; 2015 Jul; 36(4):947-54. PubMed ID: 26364474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valorisation of untreated cane molasses for enhanced phytase production by Bacillus subtilis K46b and its potential role in dephytinisation.
    Rocky-Salimi K; Hashemi M; Safari M; Mousivand M
    J Sci Food Agric; 2017 Jan; 97(1):222-229. PubMed ID: 26991843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytase production by Aspergillus oryzae in solid-state fermentation and its applicability in dephytinization of wheat bran [corrected].
    Sapna ; Singh B
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1885-95. PubMed ID: 24879597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala.
    Vohra A; Satyanarayana T
    J Appl Microbiol; 2004; 97(3):471-6. PubMed ID: 15281926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources.
    Altaf M; Venkateshwar M; Srijana M; Reddy G
    J Appl Microbiol; 2007 Aug; 103(2):372-80. PubMed ID: 17650197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation.
    Nampoothiri KM; Tomes GJ; Roopesh K; Szakacs G; Nagy V; Soccol CR; Pandey A
    Appl Biochem Biotechnol; 2004; 118(1-3):205-14. PubMed ID: 15304750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermo-acido-tolerant phytase production from a soil bacterium in a medium containing rice bran and soybean meal extract.
    Popanich S; Klomsiri C; Dharmsthiti S
    Bioresour Technol; 2003 May; 87(3):295-8. PubMed ID: 12507870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of phytase production by solid substrate fermentation.
    Bogar B; Szakacs G; Linden JC; Pandey A; Tengerdy RP
    J Ind Microbiol Biotechnol; 2003 Mar; 30(3):183-9. PubMed ID: 12715256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utility of cheap carbon & nitrogen sources for the production of a mosquito-pathogenic fungus, Lagenidium.
    Hoti SL; Balaraman K
    Indian J Med Res; 1990 Jan; 91():67-9. PubMed ID: 1971615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-state fermentation for production of phytase by Rhizopus oligosporus.
    Sabu A; Sarita S; Pandey A; Bogar B; Szakacs G; Soccol CR
    Appl Biochem Biotechnol; 2002; 102-103(1-6):251-60. PubMed ID: 12396128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of carbon and nitrogen sources on bovicin HC5 production by Streptococcus bovis HC5.
    De Carvalho AA; Mantovani HC; Paiva AD; De Melo MR
    J Appl Microbiol; 2009 Jul; 107(1):339-47. PubMed ID: 19320950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical optimization and mutagenesis for high level of phytase production by Rhizopus oligosporus MTCC 556 under solid state fermentation.
    Suresh S; Radha KV
    J Environ Biol; 2016 Mar; 37(2):253-9. PubMed ID: 27097445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost-effective cane molasses medium.
    Singh B; Satyanarayana T
    J Appl Microbiol; 2006 Aug; 101(2):344-52. PubMed ID: 16882141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of phytase in Selenomonas ruminantium and Mitsuokella multiacidus by transmission electron microscopy.
    D'Silva CG; Bae HD; Yanke LJ; Cheng KJ; Selinger LB
    Can J Microbiol; 2000 Apr; 46(4):391-5. PubMed ID: 10779878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production, purification and characterization of thermostable phytase from thermophilic fungus Thermomyces lanuginosus TL-7.
    Gulati HK; Chadha BS; Saini HS
    Acta Microbiol Immunol Hung; 2007 Jun; 54(2):121-38. PubMed ID: 17899792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.