These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 12100853)

  • 1. Water dynamics in channel hydrates investigated using H/D exchange.
    Ahlqvist MU; Taylor LS
    Int J Pharm; 2002 Jul; 241(2):253-61. PubMed ID: 12100853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time domain NMR as a new process monitoring method for characterization of pharmaceutical hydrates.
    Schumacher SU; Rothenhäusler B; Willmann A; Thun J; Moog R; Kuentz M
    J Pharm Biomed Anal; 2017 Apr; 137():96-103. PubMed ID: 28107690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding.
    Karki S; Friscić T; Jones W; Motherwell WD
    Mol Pharm; 2007; 4(3):347-54. PubMed ID: 17497885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of hydrate transition temperature using transformation kinetics obtained by Raman spectroscopy.
    Wikström H; Kakidas C; Taylor LS
    J Pharm Biomed Anal; 2009 Feb; 49(2):247-52. PubMed ID: 19112003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cocrystal dissociation in the presence of water: a general approach for identifying stable cocrystal forms.
    Eddleston MD; Madusanka N; Jones W
    J Pharm Sci; 2014 Sep; 103(9):2865-2870. PubMed ID: 24824298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrational spectra of anhydrous and monohydrated caffeine and theophylline molecules and crystals.
    Balbuena PB; Blocker W; Dudek RM; Cabrales-Navarro FA; Hirunsit P
    J Phys Chem A; 2008 Oct; 112(41):10210-9. PubMed ID: 18816035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of the causes of cocrystal dissociation at high humidity.
    Eddleston MD; Thakuria R; Aldous BJ; Jones W
    J Pharm Sci; 2014 Sep; 103(9):2859-2864. PubMed ID: 24481664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulating theophylline monohydrate formation during high-shear wet granulation through improved understanding of the role of pharmaceutical excipients.
    Wikström H; Carroll WJ; Taylor LS
    Pharm Res; 2008 Apr; 25(4):923-35. PubMed ID: 17896097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-state behavior of cromolyn sodium hydrates.
    Chen LR; Young VG; Lechuga-Ballesteros D; Grant DJ
    J Pharm Sci; 1999 Nov; 88(11):1191-200. PubMed ID: 10564069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of cromolyn sodium hydrates and its formulation by (23) Na-multiquantum and magic-angle spinning nuclear magnetic resonance spectroscopy.
    Umino M; Higashi K; Masu H; Limwikrant W; Yamamoto K; Moribe K
    J Pharm Sci; 2013 Aug; 102(8):2738-47. PubMed ID: 23839962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Transitions Involving Channel Hydrates of a New Pharmaceutical Compound.
    Kuang S; Shah HS; Zhao B
    Pharm Res; 2024 Jul; 41(7):1533-1541. PubMed ID: 38872035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of anhydrous and hydrated pharmaceutical materials with THz time-domain spectroscopy.
    Liu HB; Chen Y; Zhang XC
    J Pharm Sci; 2007 Apr; 96(4):927-34. PubMed ID: 17136761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water diffusion in hydrated crystalline and amorphous sugars monitored using H/D exchange.
    Ahlqvist MU; Taylor LS
    J Pharm Sci; 2002 Mar; 91(3):690-8. PubMed ID: 11920754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical stability of crystal hydrates and their anhydrates in the presence of excipients.
    Salameh AK; Taylor LS
    J Pharm Sci; 2006 Feb; 95(2):446-61. PubMed ID: 16380975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The conversion process of hydrocarbon hydrates into CO2 hydrates and vice versa: thermodynamic considerations.
    Schicks JM; Luzi M; Beeskow-Strauch B
    J Phys Chem A; 2011 Nov; 115(46):13324-31. PubMed ID: 21928801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dehydration mechanism of caffeine hydrate and structural description of driven metastable anhydrates analyzed by micro Raman spectroscopy.
    Hédoux A; Paccou L; Derollez P; Guinet Y
    Int J Pharm; 2015; 486(1-2):331-8. PubMed ID: 25843755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational Raman spectra of hydrogen clathrate hydrates from density functional theory.
    Ramya KR; Venkatnathan A
    J Chem Phys; 2013 Mar; 138(12):124305. PubMed ID: 23556721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural relationship and desolvation behavior of cromolyn, cefazolin and fenoprofen sodium hydrates.
    Stephenson GA; Diseroad BA
    Int J Pharm; 2000 Apr; 198(2):167-77. PubMed ID: 10767566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of excipients on hydrate formation in wet masses containing theophylline.
    Airaksinen S; Luukkonen P; Jørgensen A; Karjalainen M; Rantanen J; Yliruusi J
    J Pharm Sci; 2003 Mar; 92(3):516-28. PubMed ID: 12587113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing pseudopolymorphic transitions in pharmaceutical solids using Raman spectroscopy: hydration and dehydration of theophylline.
    Amado AM; Nolasco MM; Ribeiro-Claro PJ
    J Pharm Sci; 2007 May; 96(5):1366-79. PubMed ID: 17455358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.