These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Wild-type and mutant bacteriorhodopsins D85N, D96N, and R82Q: purification to homogeneity, pH dependence of pumping, and electron diffraction. Miercke LJ; Betlach MC; Mitra AK; Shand RF; Fong SK; Stroud RM Biochemistry; 1991 Mar; 30(12):3088-98. PubMed ID: 1848786 [TBL] [Abstract][Full Text] [Related]
3. Catalysis of the retinal subpicosecond photoisomerization process in acid purple bacteriorhodopsin and some bacteriorhodopsin mutants by chloride ions. Logunov SL; el-Sayed MA; Lanyi JK Biophys J; 1996 Sep; 71(3):1545-53. PubMed ID: 8874028 [TBL] [Abstract][Full Text] [Related]
4. Effects of Asp-96----Asn, Asp-85----Asn, and Arg-82----Gln single-site substitutions on the photocycle of bacteriorhodopsin. Thorgeirsson TE; Milder SJ; Miercke LJ; Betlach MC; Shand RF; Stroud RM; Kliger DS Biochemistry; 1991 Sep; 30(38):9133-42. PubMed ID: 1892824 [TBL] [Abstract][Full Text] [Related]
5. Buffer effects on electric signals of light-excited bacteriorhodopsin mutants. Tóth-Boconádi R; Dér A; Taneva SG; Tuparev NP; Keszthelyi L Eur Biophys J; 2001; 30(2):140-6. PubMed ID: 11409465 [TBL] [Abstract][Full Text] [Related]
6. Evidence for the rate of the final step in the bacteriorhodopsin photocycle being controlled by the proton release group: R134H mutant. Lu M; Balashov SP; Ebrey TG; Chen N; Chen Y; Menick DR; Crouch RK Biochemistry; 2000 Mar; 39(9):2325-31. PubMed ID: 10694399 [TBL] [Abstract][Full Text] [Related]
7. Conformation and dynamics changes of bacteriorhodopsin and its D85N mutant in the absence of 2D crystalline lattice as revealed by site-directed 13C NMR. Yamamoto K; Tuzi S; Saitô H; Kawamura I; Naito A Biochim Biophys Acta; 2006 Feb; 1758(2):181-9. PubMed ID: 16542636 [TBL] [Abstract][Full Text] [Related]
9. Suppressed or recovered intensities analysis in site-directed (13)C NMR: assessment of low-frequency fluctuations in bacteriorhodopsin and D85N mutants revisited. Saitô H; Kira A; Arakawa T; Tanio M; Tuzi S; Naito A Biochim Biophys Acta; 2010 Feb; 1798(2):167-76. PubMed ID: 19615331 [TBL] [Abstract][Full Text] [Related]
10. Estimated acid dissociation constants of the Schiff base, Asp-85, and Arg-82 during the bacteriorhodopsin photocycle. Brown LS; Bonet L; Needleman R; Lanyi JK Biophys J; 1993 Jul; 65(1):124-30. PubMed ID: 8369421 [TBL] [Abstract][Full Text] [Related]
11. Electric signals of light excited bacteriorhodopsin mutant D96N. Tóth-Boconádi R; Taneva SG; Keszthelyi L J Photochem Photobiol B; 2001 Dec; 65(2-3):122-6. PubMed ID: 11809369 [TBL] [Abstract][Full Text] [Related]
12. Optical and electric signals from dried oriented purple membrane of bacteriorhodopsins. Tóth-Boconádi R; Dér A; Keszthelyi L Bioelectrochemistry; 2011 Apr; 81(1):17-21. PubMed ID: 21236739 [TBL] [Abstract][Full Text] [Related]
13. Alteration of conformation and dynamics of bacteriorhodopsin induced by protonation of Asp 85 and deprotonation of Schiff base as studied by 13C NMR. Kawase Y; Tanio M; Kira A; Yamaguchi S; Tuzi S; Naito A; Kataoka M; Lanyi JK; Needleman R; Saitô H Biochemistry; 2000 Nov; 39(47):14472-80. PubMed ID: 11087400 [TBL] [Abstract][Full Text] [Related]
14. Conformational heterogeneity of transmembrane residues after the Schiff base reprotonation of bacteriorhodopsin: 15N CPMAS NMR of D85N/T170C membranes. Mason AJ; Turner GJ; Glaubitz C FEBS J; 2005 May; 272(9):2152-64. PubMed ID: 15853800 [TBL] [Abstract][Full Text] [Related]
15. Guanidinium restores the chromophore but not rapid proton release in bacteriorhodopsin mutant R82Q. Renthal R; Chung YJ; Escamilla R; Brown LS; Lanyi JK Biophys J; 1997 Nov; 73(5):2711-7. PubMed ID: 9370464 [TBL] [Abstract][Full Text] [Related]
16. Long-distance effects of site-directed mutations on backbone conformation in bacteriorhodopsin from solid state NMR of [1-13C]Val-labeled proteins. Tanio M; Inoue S; Yokota K; Seki T; Tuzi S; Needleman R; Lanyi JK; Naito A; Saitô H Biophys J; 1999 Jul; 77(1):431-42. PubMed ID: 10388769 [TBL] [Abstract][Full Text] [Related]
17. Local-access model for proton transfer in bacteriorhodopsin. Brown LS; Dioumaev AK; Needleman R; Lanyi JK Biochemistry; 1998 Mar; 37(11):3982-93. PubMed ID: 9521720 [TBL] [Abstract][Full Text] [Related]
18. Evidence for charge-controlled conformational changes in the photocycle of bacteriorhodopsin. Sass HJ; Gessenich R; Koch MH; Oesterhelt D; Dencher NA; Büldt G; Rapp G Biophys J; 1998 Jul; 75(1):399-405. PubMed ID: 9649397 [TBL] [Abstract][Full Text] [Related]
19. Hydrogen bonding interactions with the Schiff base of bacteriorhodopsin. Resonance Raman spectroscopy of the mutants D85N and D85A. Rath P; Marti T; Sonar S; Khorana HG; Rothschild KJ J Biol Chem; 1993 Aug; 268(24):17742-9. PubMed ID: 8349659 [TBL] [Abstract][Full Text] [Related]
20. Two-dimensional crystallization of Escherichia coli-expressed bacteriorhodopsin and its D96N variant: high resolution structural studies in projection. Mitra AK; Miercke LJ; Turner GJ; Shand RF; Betlach MC; Stroud RM Biophys J; 1993 Sep; 65(3):1295-306. PubMed ID: 8241409 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]