These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 12101022)
1. Roles of peptide-peptide charge interaction and lipid phase separation in helix-helix association in lipid bilayer. Shigematsu D; Matsutani M; Furuya T; Kiyota T; Lee S; Sugihara G; Yamashita S Biochim Biophys Acta; 2002 Aug; 1564(1):271-80. PubMed ID: 12101022 [TBL] [Abstract][Full Text] [Related]
2. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related]
3. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239 [TBL] [Abstract][Full Text] [Related]
4. The activation energy for insertion of transmembrane alpha-helices is dependent on membrane composition. Meijberg W; Booth PJ J Mol Biol; 2002 Jun; 319(3):839-53. PubMed ID: 12054874 [TBL] [Abstract][Full Text] [Related]
5. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface. Voglino L; McIntosh TJ; Simon SA Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538 [TBL] [Abstract][Full Text] [Related]
6. Designing transmembrane alpha-helices that insert spontaneously. Wimley WC; White SH Biochemistry; 2000 Apr; 39(15):4432-42. PubMed ID: 10757993 [TBL] [Abstract][Full Text] [Related]
7. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies. Róg T; Murzyn K; Karttunen M; Pasenkiewicz-Gierula M J Pept Sci; 2008 Apr; 14(4):374-82. PubMed ID: 17985365 [TBL] [Abstract][Full Text] [Related]
8. Investigation of interaction of Leu-enkephalin with lipid membranes. Liu S; Shibata A; Ueno S; Xu F; Baba Y; Jiang D; Li Y Colloids Surf B Biointerfaces; 2006 Mar; 48(2):148-58. PubMed ID: 16542826 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of the interaction of amphipathic alpha-helical peptides with phosphatidylcholines. McLean LR; Hagaman KA Biochim Biophys Acta; 1993 Apr; 1167(3):289-95. PubMed ID: 8481390 [TBL] [Abstract][Full Text] [Related]
10. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638 [TBL] [Abstract][Full Text] [Related]
11. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers. De Kroon AI; Soekarjo MW; De Gier J; De Kruijff B Biochemistry; 1990 Sep; 29(36):8229-40. PubMed ID: 2252886 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and characterization of β-peptide helices as transmembrane domains in lipid model membranes. Pahlke DM; Diederichsen U J Pept Sci; 2016 Oct; 22(10):636-641. PubMed ID: 27578420 [TBL] [Abstract][Full Text] [Related]
13. Investigations of the Structure, Topology, and Interactions of the Transmembrane Domain of the Lipid-Sorting Protein p24 Being Highly Selective for Sphingomyelin-C18. Aisenbrey C; Kemayo-Koumkoua P; Salnikov ES; Glattard E; Bechinger B Biochemistry; 2019 Jun; 58(24):2782-2795. PubMed ID: 31120242 [TBL] [Abstract][Full Text] [Related]
14. The spectroscopic analysis for binding of amphipathic and antimicrobial model peptides containing pyrenylalanine and tryptophan to lipid bilayer. Lee S; Yoshida M; Mihara H; Aoyagi H; Kato T; Yamasaki N Biochim Biophys Acta; 1989 Sep; 984(2):174-82. PubMed ID: 2765546 [TBL] [Abstract][Full Text] [Related]
15. Effects of sphingomyelin, cholesterol and zinc ions on the binding, insertion and aggregation of the amyloid Abeta(1-40) peptide in solid-supported lipid bilayers. Devanathan S; Salamon Z; Lindblom G; Gröbner G; Tollin G FEBS J; 2006 Apr; 273(7):1389-402. PubMed ID: 16689927 [TBL] [Abstract][Full Text] [Related]
16. On the microscopic and mesoscopic perturbations of lipid bilayers upon interaction with the MPER domain of the HIV glycoprotein gp41. Oliva R; Emendato A; Vitiello G; De Santis A; Grimaldi M; D'Ursi AM; Busi E; Del Vecchio P; Petraccone L; D'Errico G Biochim Biophys Acta; 2016 Aug; 1858(8):1904-13. PubMed ID: 27179640 [TBL] [Abstract][Full Text] [Related]
17. Binding of prion protein to lipid membranes and implications for prion conversion. Sanghera N; Pinheiro TJ J Mol Biol; 2002 Feb; 315(5):1241-56. PubMed ID: 11827491 [TBL] [Abstract][Full Text] [Related]
18. Membrane lysis by the antibacterial peptides cecropins B1 and B3: A spin-label electron spin resonance study on phospholipid bilayers. Hung SC; Wang W; Chan SI; Chen HM Biophys J; 1999 Dec; 77(6):3120-33. PubMed ID: 10585933 [TBL] [Abstract][Full Text] [Related]
19. Structural investigations of basic amphipathic model peptides in the presence of lipid vesicles studied by circular dichroism, fluorescence, monolayer and modeling. Mangavel C; Maget-Dana R; Tauc P; Brochon JC; Sy D; Reynaud JA Biochim Biophys Acta; 1998 May; 1371(2):265-83. PubMed ID: 9630666 [TBL] [Abstract][Full Text] [Related]