These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 12101030)

  • 1. Estimation of numerical density and mean synaptic height in chick hippocampus 24 and 48 hours after passive avoidance training.
    Unal B; Bradley PM; Sahin B; Canan S; Aslan H; Kaplan S
    Brain Res Dev Brain Res; 2002 Jun; 136(2):135-44. PubMed ID: 12101030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive avoidance training decreases synapse density in the hippocampus of the domestic chick.
    Nikolakopoulou AM; Davies HA; Stewart MG
    Eur J Neurosci; 2006 Feb; 23(4):1054-62. PubMed ID: 16519670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in synaptic structure in the paleostriatal complex of the domestic chick, Gallus domesticus, following passive avoidance training.
    Stewart MG; Csillag A; Rose SP
    Brain Res; 1987 Nov; 426(1):69-81. PubMed ID: 3690319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term increases in the numerical density of synapses in the chick lobus parolfactorius after passive avoidance training.
    Hunter A; Stewart MG
    Brain Res; 1993 Mar; 605(2):251-5. PubMed ID: 8481774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive avoidance training is correlated with decreased cell proliferation in the chick hippocampus.
    Nikolakopoulou AM; Dermon CR; Panagis L; Pavlidis M; Stewart MG
    Eur J Neurosci; 2006 Nov; 24(9):2631-42. PubMed ID: 17100851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dendritic spine density in the lobus parolfactorius of the domestic chick is increased 24 h after one-trial passive avoidance training.
    Lowndes M; Stewart MG
    Brain Res; 1994 Aug; 654(1):129-36. PubMed ID: 7982084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative analysis of the synaptic development of the lobus parolfactorius of the chick (Gallus domesticus).
    Hunter A; Stewart MG
    Exp Brain Res; 1989; 78(2):425-34. PubMed ID: 2599052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training induced dendritic spine density changes are specifically related to memory formation processes in the chick, Gallus domesticus.
    Patel SN; Rose SP; Stewart MG
    Brain Res; 1988 Oct; 463(1):168-73. PubMed ID: 3196906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemispheric asymmetry of synapses in chick medial hyperstriatum ventrale following passive avoidance training: a stereological investigation.
    Stewart MG; Rose SP; King TS; Gabbott PL; Bourne R
    Brain Res; 1984 Feb; 314(2):261-9. PubMed ID: 6704752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-term changes in the numerical density of synapses in the intermediate and medial hyperstriatum ventrale following one-trial passive avoidance training in the chick.
    Doubell TP; Stewart MG
    J Neurosci; 1993 May; 13(5):2230-6. PubMed ID: 8478696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus.
    Witcher MR; Kirov SA; Harris KM
    Glia; 2007 Jan; 55(1):13-23. PubMed ID: 17001633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the number and structure of dendritic spines 25 hours after passive avoidance training in the domestic chick, Gallus domesticus.
    Patel SN; Stewart MG
    Brain Res; 1988 May; 449(1-2):34-46. PubMed ID: 3395852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased immunogold labelling of neural cell adhesion molecule isoforms in synaptic active zones of the chick striatum 5-6 hours after one-trial passive avoidance training.
    Skibo GG; Davies HA; Rusakov DA; Stewart MG; Schachner M
    Neuroscience; 1998 Jan; 82(1):1-5. PubMed ID: 9483498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Population trends in the fine spatial re-organization of synaptic elements in forebrain regions of chicks 0.5 and 24 hours after passive avoidance training.
    Ruskov DA; Stewart MG; Davies HA; Harrison E
    Neuroscience; 1995 May; 66(2):291-307. PubMed ID: 7477873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmentally regulated changes in cellular compartmentation and synaptic distribution of actin in hippocampal neurons.
    Zhang W; Benson DL
    J Neurosci Res; 2002 Aug; 69(4):427-36. PubMed ID: 12210837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of prenatal auditory stimulation on numerical synaptic density and mean synaptic height in the posthatch Day 1 chick hippocampus.
    Chaudhury S; Nag TC; Wadhwa S
    Synapse; 2009 Feb; 63(2):152-9. PubMed ID: 19021205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific plasticity of parallel fiber/Purkinje cell spine synapses by motor skill learning.
    Kim HT; Kim IH; Lee KJ; Lee JR; Park SK; Chun YH; Kim H; Rhyu IJ
    Neuroreport; 2002 Sep; 13(13):1607-10. PubMed ID: 12352611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lasting changes in spontaneous multi-unit activity in the chick brain following passive avoidance training.
    Mason RJ; Rose SP
    Neuroscience; 1987 Jun; 21(3):931-41. PubMed ID: 3627442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increases in NMDA receptor binding are specifically related to memory formation for a passive avoidance task in the chick: a quantitative autoradiographic study.
    Steele RJ; Stewart MG; Rose SP
    Brain Res; 1995 Mar; 674(2):352-6. PubMed ID: 7796116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term increases in synaptic density in chick CNS after passive avoidance training are blocked by an inhibitor of protein synthesis.
    Sojka M; Davies HA; Harrison E; Stewart MG
    Brain Res; 1995 Jul; 684(2):209-14. PubMed ID: 7583225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.