BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 12101182)

  • 1. High processivity of the reverse transcriptase from a non-long terminal repeat retrotransposon.
    Bibillo A; Eickbush TH
    J Biol Chem; 2002 Sep; 277(38):34836-45. PubMed ID: 12101182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-directed DNA polymerase and strand displacement activity of the reverse transcriptase encoded by the R2 retrotransposon.
    Kurzynska-Kokorniak A; Jamburuthugoda VK; Bibillo A; Eickbush TH
    J Mol Biol; 2007 Nov; 374(2):322-33. PubMed ID: 17936300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reverse transcriptase of the R2 non-LTR retrotransposon: continuous synthesis of cDNA on non-continuous RNA templates.
    Bibiłło A; Eickbush TH
    J Mol Biol; 2002 Feb; 316(3):459-73. PubMed ID: 11866511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of HIV-1 and avian myeloblastosis virus reverse transcriptase fidelity on RNA and DNA templates.
    Yu H; Goodman MF
    J Biol Chem; 1992 May; 267(15):10888-96. PubMed ID: 1375233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between plus strand DNA synthesis removal of downstream segments of RNA by human immunodeficiency virus, murine leukemia virus and avian myeloblastoma virus reverse transcriptases.
    Fuentes GM; Fay PJ; Bambara RA
    Nucleic Acids Res; 1996 May; 24(9):1719-26. PubMed ID: 8649991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Downstream 28S gene sequences on the RNA template affect the choice of primer and the accuracy of initiation by the R2 reverse transcriptase.
    Luan DD; Eickbush TH
    Mol Cell Biol; 1996 Sep; 16(9):4726-34. PubMed ID: 8756630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of RNA cleavage during RNA-directed DNA synthesis by human immunodeficiency and avian myeloblastosis virus reverse transcriptases.
    DeStefano JJ; Mallaber LM; Fay PJ; Bambara RA
    Nucleic Acids Res; 1994 Sep; 22(18):3793-800. PubMed ID: 7524028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element.
    Luan DD; Eickbush TH
    Mol Cell Biol; 1995 Jul; 15(7):3882-91. PubMed ID: 7540721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translesion synthesis by AMV, HIV, and MMLVreverse transcriptases using RNA templates containing inosine, guanosine, and their 8-oxo-7,8-dihydropurine derivatives.
    Glennon MM; Skinner A; Krutsinger M; Resendiz MJE
    PLoS One; 2020; 15(8):e0235102. PubMed ID: 32857764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the cDNA synthesized by avian retrovirus reverse transcriptase using 35 S avian myeloblastosis virus RNA and an exogenous bovine primer tRNA.
    Sarih L; Araya A; Litvak S
    FEBS Lett; 1988 Mar; 230(1-2):61-6. PubMed ID: 2450786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viral reverse transcriptases show selective high affinity binding to DNA-DNA primer-templates that resemble the polypurine tract.
    Nair GR; Dash C; Le Grice SF; DeStefano JJ
    PLoS One; 2012; 7(7):e41712. PubMed ID: 22848574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA synthesis exhibited by the reverse transcriptase of mouse mammary tumor virus: processivity and fidelity of misinsertion and mispair extension.
    Taube R; Avidan O; Bakhanashvili M; Hizi A
    Eur J Biochem; 1998 Dec; 258(3):1032-9. PubMed ID: 9990322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of interaction of avian myeloblastosis virus reverse transcriptase with avian myeloblastosis virus RNA.
    Yamaura I; Cavalieri LF
    J Virol; 1976 Apr; 18(1):26-33. PubMed ID: 56463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reverse transcriptase encoded by the non-LTR retrotransposon R2 is as error-prone as that encoded by HIV-1.
    Jamburuthugoda VK; Eickbush TH
    J Mol Biol; 2011 Apr; 407(5):661-72. PubMed ID: 21320510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-dependent template switching during in vitro cDNA synthesis by the AMV-reverse transcriptase.
    Ouhammouch M; Brody EN
    Nucleic Acids Res; 1992 Oct; 20(20):5443-50. PubMed ID: 1279521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous primer-independent cDNA synthesis with commercial reverse transcriptase preparations on plant virus RNA templates.
    Agranovsky AA
    Anal Biochem; 1992 May; 203(1):163-5. PubMed ID: 1381874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of template-primer in protection of reverse transcriptase from thermal inactivation.
    Gerard GF; Potter RJ; Smith MD; Rosenthal K; Dhariwal G; Lee J; Chatterjee DK
    Nucleic Acids Res; 2002 Jul; 30(14):3118-29. PubMed ID: 12136094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human immunodeficiency virus reverse transcriptase ribonuclease H: specificity of tRNA(Lys3)-primer excision.
    Furfine ES; Reardon JE
    Biochemistry; 1991 Jul; 30(29):7041-6. PubMed ID: 1713059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High temperature cDNA synthesis by AMV reverse transcriptase improves the specificity of PCR.
    Fuchs B; Zhang K; Rock MG; Bolander ME; Sarkar G
    Mol Biotechnol; 1999 Oct; 12(3):237-40. PubMed ID: 10631680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA polymerization by the reverse transcriptase of the human L1 retrotransposon on its own template in vitro.
    Piskareva O; Schmatchenko V
    FEBS Lett; 2006 Jan; 580(2):661-8. PubMed ID: 16412437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.