BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 12101232)

  • 21. The Spt components of SAGA facilitate TBP binding to a promoter at a post-activator-binding step in vivo.
    Dudley AM; Rougeulle C; Winston F
    Genes Dev; 1999 Nov; 13(22):2940-5. PubMed ID: 10580001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. C-terminus of the Sgf73 subunit of SAGA and SLIK is important for retention in the larger complex and for heterochromatin boundary function.
    Kamata K; Hatanaka A; Goswami G; Shinmyozu K; Nakayama J; Urano T; Hatashita M; Uchida H; Oki M
    Genes Cells; 2013 Sep; 18(9):823-37. PubMed ID: 23819448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SAGA is an essential in vivo target of the yeast acidic activator Gal4p.
    Bhaumik SR; Green MR
    Genes Dev; 2001 Aug; 15(15):1935-45. PubMed ID: 11485988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Domains of Tra1 important for activator recruitment and transcription coactivator functions of SAGA and NuA4 complexes.
    Knutson BA; Hahn S
    Mol Cell Biol; 2011 Feb; 31(4):818-31. PubMed ID: 21149579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway.
    Pray-Grant MG; Schieltz D; McMahon SJ; Wood JM; Kennedy EL; Cook RG; Workman JL; Yates JR; Grant PA
    Mol Cell Biol; 2002 Dec; 22(24):8774-86. PubMed ID: 12446794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo.
    Martinez E; Palhan VB; Tjernberg A; Lymar ES; Gamper AM; Kundu TK; Chait BT; Roeder RG
    Mol Cell Biol; 2001 Oct; 21(20):6782-95. PubMed ID: 11564863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping the deubiquitination module within the SAGA complex.
    Durand A; Bonnet J; Fournier M; Chavant V; Schultz P
    Structure; 2014 Nov; 22(11):1553-9. PubMed ID: 25441028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preferential accessibility of the yeast his3 promoter is determined by a general property of the DNA sequence, not by specific elements.
    Mai X; Chou S; Struhl K
    Mol Cell Biol; 2000 Sep; 20(18):6668-76. PubMed ID: 10958664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Not5-dependent co-translational assembly of Ada2 and Spt20 is essential for functional integrity of SAGA.
    Kassem S; Villanyi Z; Collart MA
    Nucleic Acids Res; 2017 Feb; 45(3):1186-1199. PubMed ID: 28180299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SPT20/ADA5 encodes a novel protein functionally related to the TATA-binding protein and important for transcription in Saccharomyces cerevisiae.
    Roberts SM; Winston F
    Mol Cell Biol; 1996 Jun; 16(6):3206-13. PubMed ID: 8649431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distinct mutations in yeast TAF(II)25 differentially affect the composition of TFIID and SAGA complexes as well as global gene expression patterns.
    Kirschner DB; vom Baur E; Thibault C; Sanders SL; Gangloff YG; Davidson I; Weil PA; Tora L
    Mol Cell Biol; 2002 May; 22(9):3178-93. PubMed ID: 11940675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential requirement of SAGA subunits for Mot1p and Taf1p recruitment in gene activation.
    van Oevelen CJ; van Teeffelen HA; Timmers HT
    Mol Cell Biol; 2005 Jun; 25(12):4863-72. PubMed ID: 15923605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes.
    Hassan AH; Prochasson P; Neely KE; Galasinski SC; Chandy M; Carrozza MJ; Workman JL
    Cell; 2002 Nov; 111(3):369-79. PubMed ID: 12419247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA complex in Saccharomyces cerevisiae.
    McNabb DS; Pinto I
    Eukaryot Cell; 2005 Nov; 4(11):1829-39. PubMed ID: 16278450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SAGA binds TBP via its Spt8 subunit in competition with DNA: implications for TBP recruitment.
    Sermwittayawong D; Tan S
    EMBO J; 2006 Aug; 25(16):3791-800. PubMed ID: 16888622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutational analysis of the C-terminal FATC domain of Saccharomyces cerevisiae Tra1.
    Hoke SM; Irina Mutiu A; Genereaux J; Kvas S; Buck M; Yu M; Gloor GB; Brandl CJ
    Curr Genet; 2010 Oct; 56(5):447-65. PubMed ID: 20635087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Architectural transcription factors and the SAGA complex function in parallel pathways to activate transcription.
    Yu Y; Eriksson P; Stillman DJ
    Mol Cell Biol; 2000 Apr; 20(7):2350-7. PubMed ID: 10713159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.
    Polish JA; Kim JH; Johnston M
    Genetics; 2005 Feb; 169(2):583-94. PubMed ID: 15489524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleotide sequence of Saccharomyces cerevisiae genes TRP2 and TRP3 encoding bifunctional anthranilate synthase: indole-3-glycerol phosphate synthase.
    Zalkin H; Paluh JL; van Cleemput M; Moye WS; Yanofsky C
    J Biol Chem; 1984 Mar; 259(6):3985-92. PubMed ID: 6323449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Passive diffusion through nuclear pore complexes regulates levels of the yeast SAGA and SLIK coactivator complexes.
    Makio T; Wozniak RW
    J Cell Sci; 2020 Mar; 133(6):. PubMed ID: 32051285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.