BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 12102185)

  • 1. Surface engineering of poly(DL-lactic acid) by entrapment of alginate-amino acid derivatives for promotion of chondrogenesis.
    Zhu H; Ji J; Lin R; Gao C; Feng L; Shen J
    Biomaterials; 2002 Aug; 23(15):3141-8. PubMed ID: 12102185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface engineering of poly(D,L-lactic acid) by entrapment of chitosan-based derivatives for the promotion of chondrogenesis.
    Zhu H; Ji J; Lin R; Gao C; Feng L; Shen J
    J Biomed Mater Res; 2002 Dec; 62(4):532-9. PubMed ID: 12221701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface tailoring of poly(DL-lactic acid) by ligand-tethered amphiphilic polymer for promoting chondrocyte attachment and growth.
    Ji J; Zhu H; Shen J
    Biomaterials; 2004 May; 25(10):1859-67. PubMed ID: 14738850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface engineering of poly(D,L-lactic acid) by entrapment of soluble eggshell membrane protein.
    Lu JW; Li Q; Qi QL; Guo ZX; Yu J
    J Biomed Mater Res A; 2009 Dec; 91(3):701-7. PubMed ID: 19048638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of poly(D,L-lactic acid) scaffolds using alginate particles.
    Yu G; Fan Y
    J Biomater Sci Polym Ed; 2008; 19(1):87-98. PubMed ID: 18177556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of multilayer coating onto poly-(DL-lactide) to promote cytocompatibility.
    Zhu H; Ji J; Shen J
    Biomaterials; 2004 Jan; 25(1):109-17. PubMed ID: 14580914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracheal reconstruction using tissue-engineered cartilage.
    Grimmer JF; Gunnlaugsson CB; Alsberg E; Murphy HS; Kong HJ; Mooney DJ; Weatherly RA
    Arch Otolaryngol Head Neck Surg; 2004 Oct; 130(10):1191-6. PubMed ID: 15492167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly (L-lactic acid) porous scaffold-supported alginate hydrogel with improved mechanical properties and biocompatibility.
    Chu J; Zeng S; Gao L; Groth T; Li Z; Kong J; Zhao M; Li L
    Int J Artif Organs; 2016 Oct; 39(8):435-443. PubMed ID: 27646631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytocompatibility of novel extracellular matrix protein analogs of biodegradable polyester polymers derived from α-hydroxy amino acids.
    Lecht S; Cohen-Arazi N; Cohen G; Ettinger K; Momic T; Kolitz M; Naamneh M; Katzhendler J; Domb AJ; Lazarovici P; Lelkes PI
    J Biomater Sci Polym Ed; 2014; 25(6):608-24. PubMed ID: 24568316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface engineering of poly(DL-lactide) via electrostatic self-assembly of extracellular matrix-like molecules.
    Zhu H; Ji J; Tan Q; Barbosa MA; Shen J
    Biomacromolecules; 2003; 4(2):378-86. PubMed ID: 12625735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(D,L-lactic acid)-block-(ligand-tethered poly(ethylene glycol)) copolymers as surface additives for promoting chondrocyte attachment and growth.
    Yu G; Ji J; Zhu H; Shen J
    J Biomed Mater Res B Appl Biomater; 2006 Jan; 76(1):64-75. PubMed ID: 16130143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layer-by-layer assembly of chondroitin sulfate and collagen on aminolyzed poly(L-lactic acid) porous scaffolds to enhance their chondrogenesis.
    Gong Y; Zhu Y; Liu Y; Ma Z; Gao C; Shen J
    Acta Biomater; 2007 Sep; 3(5):677-85. PubMed ID: 17576103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilizing natural macromolecule on PLGA electrospun nanofiber with surface entrapment and entrapment-graft techniques.
    Meng ZX; Zeng QT; Sun ZZ; Xu XX; Wang YS; Zheng W; Zheng YF
    Colloids Surf B Biointerfaces; 2012 Jun; 94():44-50. PubMed ID: 22326650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling protein release from scaffolds using polymer blends and composites.
    Ginty PJ; Barry JJ; White LJ; Howdle SM; Shakesheff KM
    Eur J Pharm Biopharm; 2008 Jan; 68(1):82-9. PubMed ID: 17884400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of in vitro chondrogenesis in RGD-modified three-dimensional alginate gels.
    Connelly JT; García AJ; Levenston ME
    Biomaterials; 2007 Feb; 28(6):1071-83. PubMed ID: 17123602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic surface modification of poly(L-lactic acid) with chitosan and its effects on articular chondrocytes in vitro.
    Cui YL; Qi AD; Liu WG; Wang XH; Wang H; Ma DM; Yao KD
    Biomaterials; 2003 Sep; 24(21):3859-68. PubMed ID: 12818559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering.
    Stevens MM; Qanadilo HF; Langer R; Prasad Shastri V
    Biomaterials; 2004 Feb; 25(5):887-94. PubMed ID: 14609677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of bioinspired polymeric materials based on poly(D,L-lactic acid) modifications towards improving its cytocompatibility.
    Niu X; Luo Y; Li Y; Fu C; Chen J; Wang Y
    J Biomed Mater Res A; 2008 Mar; 84(4):908-16. PubMed ID: 17647223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact profilometry and correspondence analysis to correlate surface properties and cell adhesion in vitro of uncoated and coated Ti and Ti6Al4V disks.
    Bagno A; Genovese M; Luchini A; Dettin M; Conconi MT; Menti AM; Parnigotto PP; Di Bello C
    Biomaterials; 2004 May; 25(12):2437-45. PubMed ID: 14741609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(L-lactide)acid/alginate composite membranes for guided tissue regeneration.
    Milella E; Barra G; Ramires PA; Leo G; Aversa P; Romito A
    J Biomed Mater Res; 2001 Nov; 57(2):248-57. PubMed ID: 11484188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.