These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 12102321)
1. The effect of surface-active solutes on water flow and contaminant transport in variably saturated porous media with capillary fringe effects. Henry EJ; Smith JE J Contam Hydrol; 2002 Jun; 56(3-4):247-70. PubMed ID: 12102321 [TBL] [Abstract][Full Text] [Related]
2. Changes in air saturation and air-water interfacial area during surfactant-enhanced air sparging in saturated sand. Kim H; Choi KM; Moon JW; Annable MD J Contam Hydrol; 2006 Nov; 88(1-2):23-35. PubMed ID: 16872716 [TBL] [Abstract][Full Text] [Related]
3. Numerical study of variable-density flow and transport in unsaturated-saturated porous media. Liu Y; Kuang X; Jiao JJ; Li J J Contam Hydrol; 2015 Nov; 182():117-30. PubMed ID: 26379086 [TBL] [Abstract][Full Text] [Related]
4. Surfactant-enhanced air sparging in saturated sand. Kim H; Soh HE; Annable MD; Kim DJ Environ Sci Technol; 2004 Feb; 38(4):1170-5. PubMed ID: 14998033 [TBL] [Abstract][Full Text] [Related]
5. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments. Kim J; Kim H; Annable MD J Contam Hydrol; 2015 Jan; 172():1-9. PubMed ID: 25462638 [TBL] [Abstract][Full Text] [Related]
6. Investigation of surfactant-enhanced mass removal and flux reduction in 3D correlated permeability fields using magnetic resonance imaging. Zhang C; Werth CJ; Webb AG J Contam Hydrol; 2008 Sep; 100(3-4):116-26. PubMed ID: 18676059 [TBL] [Abstract][Full Text] [Related]
7. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments. Kim H; Ahn D; Annable MD J Contam Hydrol; 2016 Jan; 184():25-34. PubMed ID: 26697745 [TBL] [Abstract][Full Text] [Related]
8. Implications of surfactant-induced flow for miscible-displacement estimation of air-water interfacial areas in unsaturated porous media. Costanza-Robinson MS; Zheng Z; Henry EJ; Estabrook BD; Littlefield MH Environ Sci Technol; 2012 Oct; 46(20):11206-12. PubMed ID: 23033988 [TBL] [Abstract][Full Text] [Related]
9. A large-scale experiment on mass transfer of trichloroethylene from the unsaturated zone of a sandy aquifer to its interfaces. Jellali S; Benremita H; Muntzer P; Razakarisoa O; Schäfer G J Contam Hydrol; 2003 Jan; 60(1-2):31-53. PubMed ID: 12498573 [TBL] [Abstract][Full Text] [Related]
10. Effect of nonionic surfactant partitioning on the dissolution kinetics of residual perchloroethylene in a model porous medium. Sharmin R; Ioannidis MA; Legge RL J Contam Hydrol; 2006 Jan; 82(1-2):145-64. PubMed ID: 16274842 [TBL] [Abstract][Full Text] [Related]
11. Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation. Shen X; Zhao L; Ding Y; Liu B; Zeng H; Zhong L; Li X J Hazard Mater; 2011 Feb; 186(2-3):1773-80. PubMed ID: 21227581 [TBL] [Abstract][Full Text] [Related]
12. Effect of increased groundwater viscosity on the remedial performance of surfactant-enhanced air sparging. Choi JK; Kim H; Kwon H; Annable MD J Contam Hydrol; 2018 Mar; 210():42-49. PubMed ID: 29502850 [TBL] [Abstract][Full Text] [Related]
13. Simulating the fate and transport of TCE from groundwater to indoor air. Yu S; Unger AJ; Parker B J Contam Hydrol; 2009 Jul; 107(3-4):140-61. PubMed ID: 19525028 [TBL] [Abstract][Full Text] [Related]
14. Non-steady state partitioning of dry cleaning surfactants between tetrachloroethylene (PCE) and water in porous media. Hoggan JL; Bae K; Kibbey TC J Contam Hydrol; 2007 Aug; 93(1-4):149-60. PubMed ID: 17303284 [TBL] [Abstract][Full Text] [Related]
15. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
16. Simulation of experimental synthetic DNA tracer transport through the vadose zone. Wang C; Liu G; McNew CP; Volkmann THM; Pangle L; Troch PA; Lyon SW; Kim M; Huo Z; Dahlke HE Water Res; 2022 Sep; 223():119009. PubMed ID: 36037713 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous uptake of anionic surfactants and micellar-solubilized contaminants using anion-exchange resins. Cheng H; Sabatini DA Water Res; 2002 Apr; 36(8):2062-76. PubMed ID: 12092581 [TBL] [Abstract][Full Text] [Related]
18. Enhanced removal of NAPL constituent from aquifer during surfactant flushing with aqueous hydraulic barriers of high viscosity. Ahn D; Choi JK; Kim H J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jun; 52(7):590-597. PubMed ID: 28281884 [TBL] [Abstract][Full Text] [Related]
19. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the vadose zone. Uyusur B; Darnault CJ; Snee PT; Kokën E; Jacobson AR; Wells RR J Contam Hydrol; 2010 Nov; 118(3-4):184-98. PubMed ID: 21056511 [TBL] [Abstract][Full Text] [Related]
20. Surfactant-induced flow compromises determination of air-water interfacial areas by surfactant miscible-displacement. Costanza-Robinson MS; Henry EJ Chemosphere; 2017 Mar; 171():275-283. PubMed ID: 28038417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]