These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12102395)

  • 1. Measuring elastic properties of bones and silicon from V(z) curve generated by multiply reflected signals.
    Kundu T; Jørgensen CS
    Ultrasonics; 2002 Apr; 39(7):515-24. PubMed ID: 12102395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of material elastic constants of trabecular bone: a micromechanical analytic study using a 1 GHz acoustic microscope.
    Jørgensen CS; Kundu T
    J Orthop Res; 2002 Jan; 20(1):151-8. PubMed ID: 11853082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the random anisotropic elasticity layer using transient wave propagation in a fluid-solid multilayer: model and experiments.
    Desceliers C; Soize C; Grimal Q; Talmant M; Naili S
    J Acoust Soc Am; 2009 Apr; 125(4):2027-34. PubMed ID: 19354378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation of elastic waves in a fluid-loaded anisotropic functionally graded waveguide: application to ultrasound characterization.
    Baron C; Naili S
    J Acoust Soc Am; 2010 Mar; 127(3):1307-17. PubMed ID: 20329830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of transient wave propagation in a heterogeneous solid layer coupled with fluid: application to long bones.
    Naili S; Nguyen VH; Vu MB; Desceliers C; Soize C
    J Acoust Soc Am; 2015 Feb; 137(2):668-78. PubMed ID: 25698002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.
    Nguyen VH; Naili S
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):861-76. PubMed ID: 25099567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a micro-Brillouin scattering technique to characterize bone in the GHz range.
    Matsukawa M; Tsubota R; Kawabe M; Fukui K
    Ultrasonics; 2014 Jul; 54(5):1155-61. PubMed ID: 24139301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission.
    Haïat G; Naili S; Grimal Q; Talmant M; Desceliers C; Soize C
    J Acoust Soc Am; 2009 Jun; 125(6):4043-52. PubMed ID: 19507985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ray representation of longitudinal lateral waves in acoustic microscopy.
    Chan KH; Bertoni HL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(1):27-34. PubMed ID: 18267553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principal surface wave velocities in the point focus acoustic materials signature V(z) of an anisotropic solid.
    Every AG; Deschamps M
    Ultrasonics; 2003 Sep; 41(7):581-91. PubMed ID: 12919694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical characterization of sintered piezo-electric ceramic material using scanning acoustic microscope.
    Habib A; Shelke A; Vogel M; Pietsch U; Jiang X; Kundu T
    Ultrasonics; 2012 Dec; 52(8):989-95. PubMed ID: 22989949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic wave propagation in viscoelastic cortical bone plate coupled with fluids: a spectral finite element study.
    Nguyen VH; Naili S
    Comput Methods Biomech Biomed Engin; 2013; 16(9):963-74. PubMed ID: 22288934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microdefocusing method for measuring acoustic properties using acoustic microscope.
    Kanai H; Chubachi N; Sannomiya T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):643-52. PubMed ID: 18267676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropy of Young's modulus of bone.
    Katz JL
    Nature; 1980 Jan; 283(5742):106-7. PubMed ID: 7350519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biot theory: a review of its application to ultrasound propagation through cancellous bone.
    Haire TJ; Langton CM
    Bone; 1999 Apr; 24(4):291-5. PubMed ID: 10221540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel method to measure acoustic speed of bone tissue.
    Chen T; Tzeng JS; Lin CJ
    Ultrasound Med Biol; 1997; 23(9):1337-41. PubMed ID: 9428133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone.
    Lee KI; Hughes ER; Humphrey VF; Leighton TG; Choi MJ
    Phys Med Biol; 2007 Jan; 52(1):59-73. PubMed ID: 17183128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relative influence of apatite crystal orientations and intracortical porosity on the elastic anisotropy of human cortical bone.
    Baumann AP; Deuerling JM; Rudy DJ; Niebur GL; Roeder RK
    J Biomech; 2012 Nov; 45(16):2743-9. PubMed ID: 23058867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning acoustic microscope studies of the elastic properties of osteons and osteon lamellae.
    Katz JL; Meunier A
    J Biomech Eng; 1993 Nov; 115(4B):543-8. PubMed ID: 8302038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A reflection scanning acoustic microscope for bone and bone-biomaterials interface studies.
    Meunier A; Katz JL; Christel P; Sedel L
    J Orthop Res; 1988; 6(5):770-5. PubMed ID: 3404335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.