BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 12102498)

  • 21. Low doses of ionizing radiation induce immune-stimulatory responses in isolated human primary monocytes.
    El-Saghire H; Michaux A; Thierens H; Baatout S
    Int J Mol Med; 2013 Dec; 32(6):1407-14. PubMed ID: 24085242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of the mechanisms underpinning IL-6 cytokine release in bystander responses: the roles of radiation dose, radiation quality and specific ROS/RNS scavengers.
    Mariotti LG; Bertolotti A; Ranza E; Babini G; Ottolenghi A
    Int J Radiat Biol; 2012 Oct; 88(10):751-62. PubMed ID: 22709338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species.
    Alan Mitteer R; Wang Y; Shah J; Gordon S; Fager M; Butter PP; Jun Kim H; Guardiola-Salmeron C; Carabe-Fernandez A; Fan Y
    Sci Rep; 2015 Sep; 5():13961. PubMed ID: 26354413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive responses to low doses of radiation or chemicals: their cellular and molecular mechanisms.
    Guéguen Y; Bontemps A; Ebrahimian TG
    Cell Mol Life Sci; 2019 Apr; 76(7):1255-1273. PubMed ID: 30535789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radiation resistance: Cancer stem cells (CSCs) and their enigmatic pro-survival signaling.
    Skvortsova I; Debbage P; Kumar V; Skvortsov S
    Semin Cancer Biol; 2015 Dec; 35():39-44. PubMed ID: 26392376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-dose ionizing radiation: induction of differential intracellular signalling possibly affecting intercellular communication.
    Trosko JE; Chang CC; Upham BL; Tai MH
    Radiat Environ Biophys; 2005 May; 44(1):3-9. PubMed ID: 15821925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ROS implication in a new antitumor strategy based on non-thermal plasma.
    Vandamme M; Robert E; Lerondel S; Sarron V; Ries D; Dozias S; Sobilo J; Gosset D; Kieda C; Legrain B; Pouvesle JM; Pape AL
    Int J Cancer; 2012 May; 130(9):2185-94. PubMed ID: 21702038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential relationship between the biological effects of low-dose irradiation and mitochondrial ROS production.
    Kawamura K; Qi F; Kobayashi J
    J Radiat Res; 2018 Apr; 59(suppl_2):ii91-ii97. PubMed ID: 29415254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA damage, death receptor activation and reactive oxygen species contribute to ultraviolet radiation-induced apoptosis in an essential and independent way.
    Kulms D; Zeise E; Pöppelmann B; Schwarz T
    Oncogene; 2002 Aug; 21(38):5844-51. PubMed ID: 12185583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.
    Ralph SJ; Rodríguez-Enríquez S; Neuzil J; Saavedra E; Moreno-Sánchez R
    Mol Aspects Med; 2010 Apr; 31(2):145-70. PubMed ID: 20206201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin induces premature senescence of astrocytes via WNT/β-catenin signaling and ROS production.
    Nie X; Liang L; Xi H; Jiang S; Jiang J; Tang C; Liu X; Liu S; Wan C; Zhao J; Yang J
    J Appl Toxicol; 2015 Jul; 35(7):851-60. PubMed ID: 25382668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular responses to reactive oxygen species-induced DNA damage and aging.
    Bertram C; Hass R
    Biol Chem; 2008 Mar; 389(3):211-20. PubMed ID: 18208352
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estrogen-induced generation of reactive oxygen and nitrogen species, gene damage, and estrogen-dependent cancers.
    Roy D; Cai Q; Felty Q; Narayan S
    J Toxicol Environ Health B Crit Rev; 2007; 10(4):235-57. PubMed ID: 17620201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint.
    Yamamori T; Yasui H; Yamazumi M; Wada Y; Nakamura Y; Nakamura H; Inanami O
    Free Radic Biol Med; 2012 Jul; 53(2):260-70. PubMed ID: 22580337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox signaling in cancer biology.
    Gius D; Spitz DR
    Antioxid Redox Signal; 2006; 8(7-8):1249-52. PubMed ID: 16910772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactive oxygen species as mediator of tumor radiosensitivity.
    Dayal R; Singh A; Pandey A; Mishra KP
    J Cancer Res Ther; 2014; 10(4):811-8. PubMed ID: 25579513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arsenic trioxide and radiation enhance apoptotic effects in HL-60 cells through increased ROS generation and regulation of JNK and p38 MAPK signaling pathways.
    Ho SY; Wu WJ; Chiu HW; Chen YA; Ho YS; Guo HR; Wang YJ
    Chem Biol Interact; 2011 Sep; 193(2):162-71. PubMed ID: 21741957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low dose radiation and intercellular induction of apoptosis: potential implications for the control of oncogenesis.
    Bauer G
    Int J Radiat Biol; 2007; 83(11-12):873-88. PubMed ID: 18058371
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of low-dose ionizing radiation and menadione, an inducer of oxidative stress, alone and in combination in a vertebrate embryo model.
    Bladen CL; Kozlowski DJ; Dynan WS
    Radiat Res; 2012 Nov; 178(5):499-503. PubMed ID: 23092554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.