These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12102507)

  • 1. Proline metabolism and transport in maize seedlings at low water potential.
    Raymond MJ; Smirnoff N
    Ann Bot; 2002 Jun; 89 Spec No(7):813-23. PubMed ID: 12102507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Free and bound amino acids during germination of maize seeds with implemented foreign prolamines].
    Novozhilova OA; Timoshchenko AS; Aref'eva LP; Semikhov VF
    Prikl Biokhim Mikrobiol; 2003; 39(3):346-52. PubMed ID: 12754835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. II. Metabolic source of increased proline deposition in the elongation zone.
    Verslues PE; Sharp RE
    Plant Physiol; 1999 Apr; 119(4):1349-60. PubMed ID: 10198094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The up-regulation of proline synthesis in the meristematic tissues of wheat seedlings upon short-term exposure to osmotic stress.
    Koenigshofer H; Loeppert HG
    J Plant Physiol; 2019 Jun; 237():21-29. PubMed ID: 30999074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The root tip and accelerating region suppress elongation of the decelerating region without any effects on cell turgor in primary roots of maize under water stress.
    Shimazaki Y; Ookawa T; Hirasawa T
    Plant Physiol; 2005 Sep; 139(1):458-65. PubMed ID: 16100358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triticonazole distribution in dressed corn caryopsis and seedlings.
    Raveton M; Ravanel P; Royer F; Schneider A; Euvrard M; Tissut M
    J Agric Food Chem; 1999 Apr; 47(4):1740-4. PubMed ID: 10564047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A metabolic study of the regulation of proteolysis by sugars in maize root tips: effects of glycerol and dihydroxyacetone.
    Brouquisse R; Rolin D; Cortès S; Gaudillère M; Evrard A; Roby C
    Planta; 2007 Feb; 225(3):693-709. PubMed ID: 16944197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auxin Efflux Carrier ZmPGP1 Mediates Root Growth Inhibition under Aluminum Stress.
    Zhang M; Lu X; Li C; Zhang B; Zhang C; Zhang XS; Ding Z
    Plant Physiol; 2018 Jun; 177(2):819-832. PubMed ID: 29720555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-resolution tissue-specific proteome and phosphoproteome atlas of maize primary roots reveals functional gradients along the root axes.
    Marcon C; Malik WA; Walley JW; Shen Z; Paschold A; Smith LG; Piepho HP; Briggs SP; Hochholdinger F
    Plant Physiol; 2015 May; 168(1):233-46. PubMed ID: 25780097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exogenous mammalian sex hormones mitigate inhibition in growth by enhancing antioxidant activity and synthesis reactions in germinating maize seeds under salt stress.
    Erdal S
    J Sci Food Agric; 2012 Mar; 92(4):839-43. PubMed ID: 21953570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Activation of cell division in the quiescent center of excised maize root tip].
    Ivanov VB; Bystrova EI; Mesenko MM; Kotova LM; Kotov AA
    Ontogenez; 2011; 42(5):357-62. PubMed ID: 22145304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of water deficit on radicle apex elongation and solute accumulation in Zea mays L.
    Velázquez-Márquez S; Conde-Martínez V; Trejo C; Delgado-Alvarado A; Carballo A; Suárez R; Mascorro JO; Trujillo AR
    Plant Physiol Biochem; 2015 Nov; 96():29-37. PubMed ID: 26218550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HgCl2, an inhibitor of aquaporins, enhances root water-pumping activity.
    Dustmamatov AG; Zholkevich VN
    Dokl Biol Sci; 2008; 421():262-5. PubMed ID: 18841810
    [No Abstract]   [Full Text] [Related]  

  • 14. The effect of hydro and proline seed priming on growth, proline and sugar content, and antioxidant activity of maize under cadmium stress.
    Karalija E; Selović A
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33370-33380. PubMed ID: 30259326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Ca(2+)-dependent cysteine protease is associated with anoxia-induced root tip death in maize.
    Subbaiah CC; Kollipara KP; Sachs MM
    J Exp Bot; 2000 Apr; 51(345):721-30. PubMed ID: 10938864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initiation and regulation of water deficit-induced abscisic acid accumulation in maize leaves and roots: cellular volume and water relations.
    Jia W; Zhang J; Liang J
    J Exp Bot; 2001 Feb; 52(355):295-300. PubMed ID: 11283174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton pumping in growing part of maize root: its correlation with 14-3-3 protein content and changes in response to osmotic stress.
    Shanko AV; Mesenko MM; Klychnikov OI; Nosov AV; Ivanov VB
    Biochemistry (Mosc); 2003 Dec; 68(12):1320-6. PubMed ID: 14756628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of leucine-14C and lysine-14C into protein in the developing endosperm of normal and opaque-2 corn.
    Sodek L; Wilson CM
    Arch Biochem Biophys; 1970 Sep; 140(1):29-38. PubMed ID: 5460182
    [No Abstract]   [Full Text] [Related]  

  • 19. The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.).
    Chen J; Dou R; Yang Z; Wang X; Mao C; Gao X; Wang L
    Nanotoxicology; 2016 Aug; 10(6):818-28. PubMed ID: 26694806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological responses of maize roots to low water potentials: relationship to growth and ABA accumulation.
    Ober ES; Sharp RE
    J Exp Bot; 2003 Feb; 54(383):813-24. PubMed ID: 12554724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.