BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12102724)

  • 1. Gramicidin S: a peptide model for protein glycation and reversal of glycation using nucleophilic amines.
    Shakkottai VG; Sudha R; Balaram P
    J Pept Res; 2002 Aug; 60(2):112-20. PubMed ID: 12102724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helical peptide models for protein glycation: proximity effects in catalysis of the Amadori rearrangement.
    Venkatraman J; Aggarwal K; Balaram P
    Chem Biol; 2001 Jul; 8(7):611-25. PubMed ID: 11451663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of advanced protein glycation by a Schiff base between aminoguanidine and pyridoxal.
    Taguchi T; Sugiura M; Hamada Y; Miwa I
    Eur J Pharmacol; 1999 Aug; 378(3):283-9. PubMed ID: 10493104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of the site specificity of glycation and carboxymethylation of ribonuclease.
    Brock JW; Hinton DJ; Cotham WE; Metz TO; Thorpe SR; Baynes JW; Ames JM
    J Proteome Res; 2003; 2(5):506-13. PubMed ID: 14582647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of nonenzymatic glycation of ribonuclease A leading to advanced glycation end products. Paradoxical inhibition by ribose leads to facile isolation of protein intermediate for rapid post-Amadori studies.
    Khalifah RG; Todd P; Booth AA; Yang SX; Mott JD; Hudson BG
    Biochemistry; 1996 Apr; 35(15):4645-54. PubMed ID: 8664253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro kinetic studies of formation of antigenic advanced glycation end products (AGEs). Novel inhibition of post-Amadori glycation pathways.
    Booth AA; Khalifah RG; Todd P; Hudson BG
    J Biol Chem; 1997 Feb; 272(9):5430-7. PubMed ID: 9038143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does glycation really distort the peptide α-helicity?
    Mariño L; Casasnovas R; Ramis R; Vilanova B; Ortega-Castro J; Frau J; Adrover M
    Int J Biol Macromol; 2019 May; 129():254-266. PubMed ID: 30738904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycation of amino groups in protein. Studies on the specificity of modification of RNase by glucose.
    Watkins NG; Thorpe SR; Baynes JW
    J Biol Chem; 1985 Sep; 260(19):10629-36. PubMed ID: 4030761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amadorins: novel post-Amadori inhibitors of advanced glycation reactions.
    Khalifah RG; Baynes JW; Hudson BG
    Biochem Biophys Res Commun; 1999 Apr; 257(2):251-8. PubMed ID: 10198198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnostic MS/MS fragmentation patterns for the discrimination between Schiff bases and their Amadori or Heyns rearrangement products.
    Xing H; Mossine VV; Yaylayan V
    Carbohydr Res; 2020 May; 491():107985. PubMed ID: 32213351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ADP-ribose in glycation and glycoxidation reactions.
    Jacobson EL; Cervantes-Laurean D; Jacobson MK
    Adv Exp Med Biol; 1997; 419():371-9. PubMed ID: 9193679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amadori product and age formation during nonenzymatic glycosylation of bovine serum albumin in vitro.
    Sharma SD; Pandey BN; Mishra KP; Sivakami S
    J Biochem Mol Biol Biophys; 2002 Aug; 6(4):233-42. PubMed ID: 12186738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of AGE-precursors and AGE formation in glycation-induced BSA peptides.
    Ahmad W; Li L; Deng Y
    BMB Rep; 2008 Jul; 41(7):516-22. PubMed ID: 18682035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of oxidative stress in the long-term glycation of LDL.
    Menzel EJ; Sobal G; Staudinger A
    Biofactors; 1997; 6(2):111-24. PubMed ID: 9259992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative quantification of N(epsilon)-(Carboxymethyl)lysine, imidazolone A, and the Amadori product in glycated lysozyme by MALDI-TOF mass spectrometry.
    Kislinger T; Humeny A; Peich CC; Zhang X; Niwa T; Pischetsrieder M; Becker CM
    J Agric Food Chem; 2003 Jan; 51(1):51-7. PubMed ID: 12502384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unexpected crosslinking and diglycation as advanced glycation end-products from glyoxal.
    Lopez-Clavijo AF; Duque-Daza CA; Soulby A; Canelon IR; Barrow M; O'Connor PB
    J Am Soc Mass Spectrom; 2014 Dec; 25(12):2125-33. PubMed ID: 25315462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of a synthetic glucose derived advanced glycation end product that is immunologically cross-reactive with its naturally occurring counterparts.
    Al-Abed Y; Bucala R
    Bioconjug Chem; 2000; 11(1):39-45. PubMed ID: 10639083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a novel advanced glycation end product derived from lactaldehyde.
    Fujimoto S; Murakami Y; Miyake H; Hayase F; Watanabe H
    Biosci Biotechnol Biochem; 2019 Jun; 83(6):1136-1145. PubMed ID: 30822216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach.
    Salahuddin P; Rabbani G; Khan RH
    Cell Mol Biol Lett; 2014 Sep; 19(3):407-37. PubMed ID: 25141979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pyridoxamine action on Amadori compounds: A reexamination of its scavenging capacity and chelating effect.
    Adrover M; Vilanova B; Frau J; Muñoz F; Donoso J
    Bioorg Med Chem; 2008 May; 16(10):5557-69. PubMed ID: 18434162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.