BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 12105142)

  • 1. Enhanced endothelin activity prevents vasodilation to insulin in insulin resistance.
    Miller AW; Tulbert C; Puskar M; Busija DW
    Hypertension; 2002 Jul; 40(1):78-82. PubMed ID: 12105142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin-induced biphasic responses in rat mesenteric vascular bed: role of endothelin.
    Misurski DA; Wu SQ; McNeill JR; Wilson TW; Gopalakrishnan V
    Hypertension; 2001 May; 37(5):1298-302. PubMed ID: 11358944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
    White R; Hiley CR
    Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulin-induced relaxation of rat mesenteric artery is mediated by Ca(2+)-activated K(+) channels.
    Iida S; Taguchi H; Watanabe N; Kushiro T; Kanmatsuse K
    Eur J Pharmacol; 2001 Jan; 411(1-2):155-160. PubMed ID: 11137870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Ca2+-dependent potassium channels in in vitro anandamide-mediated mesenteric vasorelaxation in rats with biliary cirrhosis.
    Yang YY; Lin HC; Huang YT; Lee TY; Hou MC; Wang YW; Lee FY; Lee SD
    Liver Int; 2007 Oct; 27(8):1045-55. PubMed ID: 17845532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Curcumin-Induced Vasorelaxation in Rat Superior Mesenteric Arteries.
    Zhang H; Liu H; Chen Y; Zhang Y
    Ann Vasc Surg; 2018 Apr; 48():233-240. PubMed ID: 28943490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome P450 activity and endothelial dysfunction in insulin resistance.
    Katakam PV; Hoenig M; Ujhelyi MR; Miller AW
    J Vasc Res; 2000; 37(5):426-34. PubMed ID: 11025406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of coronary vasodilation to insulin and insulin-like growth factor I is dependent on vessel size.
    Oltman CL; Kane NL; Gutterman DD; Bar RS; Dellsperger KC
    Am J Physiol Endocrinol Metab; 2000 Jul; 279(1):E176-81. PubMed ID: 10893337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelial factors and autoregulation during pressure changes in isolated newborn piglet cerebral arteries.
    Martínez-Orgado J; González R; Alonso MJ; Rodríguez-Martínez MA; Sánchez-Ferrer CF; Marín J
    Pediatr Res; 1998 Aug; 44(2):161-7. PubMed ID: 9702908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelin receptor subtypes in resistance arteries from humans and rats.
    Deng LY; Li JS; Schiffrin EL
    Cardiovasc Res; 1995 Apr; 29(4):532-5. PubMed ID: 7796447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interdependence of contractile responses of rat small mesenteric arteries on nitric oxide and cyclo-oxygenase and lipoxygenase products of arachidonic acid.
    Wu XC; Johns E; Michael J; Richards NT
    Br J Pharmacol; 1994 Jun; 112(2):360-8. PubMed ID: 7521254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visceral periadventitial adipose tissue regulates arterial tone of mesenteric arteries.
    Verlohren S; Dubrovska G; Tsang SY; Essin K; Luft FC; Huang Y; Gollasch M
    Hypertension; 2004 Sep; 44(3):271-6. PubMed ID: 15302842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contribution of d-tubocurarine-sensitive and apamin-sensitive K-channels to EDHF-mediated relaxation of mesenteric arteries from eNOS-/- mice.
    Chen X; Li Y; Hollenberg M; Triggle CR; Ding H
    J Cardiovasc Pharmacol; 2012 May; 59(5):413-25. PubMed ID: 22217882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin inhibits acetylcholine responses in rat isolated mesenteric arteries via a non-nitric oxide nonprostanoid pathway.
    Kimura M; Jefferis AM; Watanabe H; Chin-Dusting J
    Hypertension; 2002 Jan; 39(1):35-40. PubMed ID: 11799075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dilator effect of endothelins in pulmonary circulation: changes associated with chronic hypoxia.
    Eddahibi S; Springall D; Mannan M; Carville C; Chabrier PE; Levame M; Raffestin B; Polak J; Adnot S
    Am J Physiol; 1993 Dec; 265(6 Pt 1):L571-80. PubMed ID: 8279573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological evidence for the activation of potassium channels as the mechanism involved in the hypotensive and vasorelaxant effect of dioclein in rat small resistance arteries.
    Côrtes SF; Rezende BA; Corriu C; Medeiros IA; Teixeira MM; Lopes MJ; Lemos VS
    Br J Pharmacol; 2001 Jul; 133(6):849-58. PubMed ID: 11454658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelin A (ET(A)) receptors are involved in augmented adrenergic vasoconstriction and blunted nitric oxide-mediated relaxation of penile arteries from insulin-resistant obese zucker rats.
    Sánchez A; Contreras C; Martínez P; Muñoz M; Martínez AC; García-Sacristán A; Hernández M; Prieto D
    J Sex Med; 2014 Jun; 11(6):1463-74. PubMed ID: 24697908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced endothelin-1 response and receptor expression in small mesenteric arteries of insulin-resistant rats.
    Katakam PV; Pollock JS; Pollock DM; Ujhelyi MR; Miller AW
    Am J Physiol Heart Circ Physiol; 2001 Feb; 280(2):H522-7. PubMed ID: 11158947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired endothelium-derived hyperpolarization-type relaxation in superior mesenteric arteries isolated from female Otsuka Long-Evans Tokushima Fatty rats.
    Matsumoto T; Kobayashi S; Ando M; Watanabe S; Iguchi M; Taguchi K; Kobayashi T
    Eur J Pharmacol; 2017 Jul; 807():151-158. PubMed ID: 28433656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired endothelium-mediated relaxation in coronary arteries from insulin-resistant rats.
    Miller AW; Katakam PV; Ujhelyi MR
    J Vasc Res; 1999; 36(5):385-92. PubMed ID: 10559679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.