BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 12105208)

  • 1. Hydroxylation of indole by laboratory-evolved 2-hydroxybiphenyl 3-monooxygenase.
    Meyer A; Würsten M; Schmid A; Kohler HP; Witholt B
    J Biol Chem; 2002 Sep; 277(37):34161-7. PubMed ID: 12105208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changing the substrate reactivity of 2-hydroxybiphenyl 3-monooxygenase from Pseudomonas azelaica HBP1 by directed evolution.
    Meyer A; Schmid A; Held M; Westphal AH; Rothlisberger M; Kohler HP; van Berkel WJ; Witholt B
    J Biol Chem; 2002 Feb; 277(7):5575-82. PubMed ID: 11733527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of the Apo and FAD-bound forms of 2-hydroxybiphenyl 3-monooxygenase (HbpA) locate activity hotspots identified by using directed evolution.
    Jensen CN; Mielke T; Farrugia JE; Frank A; Man H; Hart S; Turkenburg JP; Grogan G
    Chembiochem; 2015 Apr; 16(6):968-76. PubMed ID: 25737306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of 2-hydroxybiphenyl 3-monooxygenase, a novel NADH-dependent, FAD-containing aromatic hydroxylase from Pseudomonas azelaica HBP1.
    Suske WA; Held M; Schmid A; Fleischmann T; Wubbolts MG; Kohler HP
    J Biol Chem; 1997 Sep; 272(39):24257-65. PubMed ID: 9305879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A crystal structure of 2-hydroxybiphenyl 3-monooxygenase with bound substrate provides insights into the enzymatic mechanism.
    Kanteev M; Bregman-Cohen A; Deri B; Shahar A; Adir N; Fishman A
    Biochim Biophys Acta; 2015 Dec; 1854(12):1906-1913. PubMed ID: 26275805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic mechanism of 2-hydroxybiphenyl 3-monooxygenase, a flavoprotein from Pseudomonas azelaica HBP1.
    Suske WA; van Berkel WJ; Kohler HP
    J Biol Chem; 1999 Nov; 274(47):33355-65. PubMed ID: 10559214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds.
    Rui L; Reardon KF; Wood TK
    Appl Microbiol Biotechnol; 2005 Jan; 66(4):422-9. PubMed ID: 15290130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome P450 BM-3 evolved by random and saturation mutagenesis as an effective indole-hydroxylating catalyst.
    Li HM; Mei LH; Urlacher VB; Schmid RD
    Appl Biochem Biotechnol; 2008 Jan; 144(1):27-36. PubMed ID: 18415984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expansion of substrate specificity of cytochrome P450 2A6 by random and site-directed mutagenesis.
    Wu ZL; Podust LM; Guengerich FP
    J Biol Chem; 2005 Dec; 280(49):41090-100. PubMed ID: 16215230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallization and preliminary X-ray analysis of native and selenomethionine 2-hydroxybiphenyl 3-monooxygenase.
    Meyer A; Tanner D; Schmid A; Sargent DF; Kohler HP; Witholt B
    Acta Crystallogr D Biol Crystallogr; 2003 Apr; 59(Pt 4):741-3. PubMed ID: 12657798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.
    Luanloet T; Sucharitakul J; Chaiyen P
    FEBS J; 2015 Aug; 282(16):3107-25. PubMed ID: 25639849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random mutagenesis of human cytochrome p450 2A6 and screening with indole oxidation products.
    Nakamura K; Martin MV; Guengerich FP
    Arch Biochem Biophys; 2001 Nov; 395(1):25-31. PubMed ID: 11673862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-Based Redesign of a Self-Sufficient Flavin-Containing Monooxygenase towards Indigo Production.
    Lončar N; van Beek HL; Fraaije MW
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31817552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed evolution of the fatty-acid hydroxylase P450 BM-3 into an indole-hydroxylating catalyst.
    Li QS; Schwaneberg U; Fischer P; Schmid RD
    Chemistry; 2000 May; 6(9):1531-6. PubMed ID: 10839169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-component flavin-dependent pyrrole-2-carboxylate monooxygenase from Rhodococcus sp.
    Becker D; Schräder T; Andreesen JR
    Eur J Biochem; 1997 Nov; 249(3):739-47. PubMed ID: 9395321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of 3-tert-butylcatechol by an engineered monooxygenase.
    Meyer A; Held M; Schmid A; Kohler HP; Witholt B
    Biotechnol Bioeng; 2003 Mar; 81(5):518-24. PubMed ID: 12514800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyr217 and His213 are important for substrate binding and hydroxylation of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1.
    Sucharitakul J; Medhanavyn D; Pakotiprapha D; van Berkel WJ; Chaiyen P
    FEBS J; 2016 Mar; 283(5):860-81. PubMed ID: 26709612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altering 2-Hydroxybiphenyl 3-Monooxygenase Regioselectivity by Protein Engineering for the Production of a New Antioxidant.
    Bregman-Cohen A; Deri B; Maimon S; Pazy Y; Fishman A
    Chembiochem; 2018 Mar; 19(6):583-590. PubMed ID: 29297973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations of toluene-4-monooxygenase that alter regiospecificity of indole oxidation and lead to production of novel indigoid pigments.
    McClay K; Boss C; Keresztes I; Steffan RJ
    Appl Environ Microbiol; 2005 Sep; 71(9):5476-83. PubMed ID: 16151140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational transitions induced by NADH binding promote reduction half-reaction in 2-hydroxybiphenyl-3-monooxygenase catalytic cycle.
    Kopylov K; Kirilin E; Švedas V
    Biochem Biophys Res Commun; 2023 Jan; 639():77-83. PubMed ID: 36470075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.