These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 12105904)

  • 1. Studying enzyme binding specificity in acetylcholinesterase using a combined molecular dynamics and multiple docking approach.
    Kua J; Zhang Y; McCammon JA
    J Am Chem Soc; 2002 Jul; 124(28):8260-7. PubMed ID: 12105904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studying the roles of W86, E202, and Y337 in binding of acetylcholine to acetylcholinesterase using a combined molecular dynamics and multiple docking approach.
    Kua J; Zhang Y; Eslami AC; Butler JR; McCammon JA
    Protein Sci; 2003 Dec; 12(12):2675-84. PubMed ID: 14627729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.
    Johnson JL; Cusack B; Davies MP; Fauq A; Rosenberry TL
    Biochemistry; 2003 May; 42(18):5438-52. PubMed ID: 12731886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and experimental investigations of electrostatic effects on acetylcholinesterase catalysis and inhibition.
    Malany S; Baker N; Verweyst M; Medhekar R; Quinn DM; Velan B; Kronman C; Shafferman A
    Chem Biol Interact; 1999 May; 119-120():99-110. PubMed ID: 10421443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular recognition in acetylcholinesterase catalysis: free-energy correlations for substrate turnover and inhibition by trifluoro ketone transition-state analogs.
    Nair HK; Seravalli J; Arbuckle T; Quinn DM
    Biochemistry; 1994 Jul; 33(28):8566-76. PubMed ID: 8031791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insights into substrate traffic and inhibition in acetylcholinesterase.
    Colletier JP; Fournier D; Greenblatt HM; Stojan J; Sussman JL; Zaccai G; Silman I; Weik M
    EMBO J; 2006 Jun; 25(12):2746-56. PubMed ID: 16763558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxime-dipeptides as anticholinesterase, reactivator of phosphonylated-serine of AChE catalytic triad: probing the mechanistic insight by MM-GBSA, dynamics simulations and DFT analysis.
    Chadha N; Tiwari AK; Kumar V; Lal S; Milton MD; Mishra AK
    J Biomol Struct Dyn; 2015; 33(5):978-90. PubMed ID: 24805972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the Binding Pattern of Geraniol with Acetylcholinesterase through In Silico Docking, Molecular Dynamics Simulation, and In Vitro Enzyme Inhibition Kinetics Studies.
    Iqbal D; Khan MS; Waiz M; Rehman MT; Alaidarous M; Jamal A; Alothaim AS; AlAjmi MF; Alshehri BM; Banawas S; Alsaweed M; Madkhali Y; Algarni A; Alsagaby SA; Alturaiki W
    Cells; 2021 Dec; 10(12):. PubMed ID: 34944045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic insight into designed carbamate-based derivatives as acetylcholine esterase (AChE) inhibitors: a computational study by multiple molecular docking and molecular dynamics simulation.
    Mohammadi T; Ghayeb Y
    J Biomol Struct Dyn; 2018 Jan; 36(1):126-138. PubMed ID: 27924680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of molecular descriptors for design of novel Isoalloxazine derivatives as potential Acetylcholinesterase inhibitors against Alzheimer's disease.
    Gurung AB; Aguan K; Mitra S; Bhattacharjee A
    J Biomol Struct Dyn; 2017 Jun; 35(8):1729-1742. PubMed ID: 27410776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A steric blockade model for inhibition of acetylcholinesterase by peripheral site ligands and substrate.
    Rosenberry TL; Mallender WD; Thomas PJ; Szegletes T
    Chem Biol Interact; 1999 May; 119-120():85-97. PubMed ID: 10421442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate binding to the peripheral site of acetylcholinesterase initiates enzymatic catalysis. Substrate inhibition arises as a secondary effect.
    Szegletes T; Mallender WD; Thomas PJ; Rosenberry TL
    Biochemistry; 1999 Jan; 38(1):122-33. PubMed ID: 9890890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Conformational differences in the sorption of choline ligands at the active site of acetylcholinesterase].
    Shestakova NN; Rozengart EV
    Bioorg Khim; 1995 May; 21(5):323-9. PubMed ID: 7661856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the active ingredients of Shenghui decoction inhibiting acetylcholinesterase based on molecular docking and molecular dynamics simulation.
    Li Z; Shi H
    Medicine (Baltimore); 2023 Sep; 102(38):e34909. PubMed ID: 37746985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of TRP84 in catalytic power and the specificity of AChE.
    Pomponi M; Sacchi S; Colella A; Patamia M; Marta M
    Biophys Chem; 1998 Jun; 72(3):239-46. PubMed ID: 9691268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies.
    Pang YP; Kozikowski AP
    J Comput Aided Mol Des; 1994 Dec; 8(6):669-81. PubMed ID: 7738603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting acetylcholinesterase: identification of chemical leads by high throughput screening, structure determination and molecular modeling.
    Berg L; Andersson CD; Artursson E; Hörnberg A; Tunemalm AK; Linusson A; Ekström F
    PLoS One; 2011; 6(11):e26039. PubMed ID: 22140425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic influence on the kinetics of ligand binding to acetylcholinesterase. Distinctions between active center ligands and fasciculin.
    Radić Z; Kirchhoff PD; Quinn DM; McCammon JA; Taylor P
    J Biol Chem; 1997 Sep; 272(37):23265-77. PubMed ID: 9287336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation study and molecular docking descriptors in structure-based QSAR on acetylcholinesterase (AChE) inhibitors.
    Gharaghani S; Khayamian T; Ebrahimi M
    SAR QSAR Environ Res; 2013; 24(9):773-94. PubMed ID: 23863115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The simulated binding of (+/-)-2,3-dihydro-5,6-dimethoxy-2-[[1-(phenylmethyl)-4-piperidinyl]meth yl] -1H-inden-1-one hydrochloride (E2020) and related inhibitors to free and acylated acetylcholinesterases and corresponding structure-activity analyses.
    Inoue A; Kawai T; Wakita M; Iimura Y; Sugimoto H; Kawakami Y
    J Med Chem; 1996 Oct; 39(22):4460-70. PubMed ID: 8893840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.