These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 12107130)

  • 1. The 2-aminoethylphosphonate-specific transaminase of the 2-aminoethylphosphonate degradation pathway.
    Kim AD; Baker AS; Dunaway-Mariano D; Metcalf WW; Wanner BL; Martin BM
    J Bacteriol; 2002 Aug; 184(15):4134-40. PubMed ID: 12107130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization of a 2-aminoethylphosphonate:pyruvate aminotransferase from Pseudomonas aeruginosa PAO1.
    Jia H; Chen Y; Chen Y; Liu R; Zhang Q; Bartlam M
    Biochem Biophys Res Commun; 2021 May; 552():114-119. PubMed ID: 33743347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation pathway of the phosphonate ciliatine: crystal structure of 2-aminoethylphosphonate transaminase.
    Chen CC; Zhang H; Kim AD; Howard A; Sheldrick GM; Mariano-Dunaway D; Herzberg O
    Biochemistry; 2002 Nov; 41(44):13162-9. PubMed ID: 12403617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions at the 2 and 5 positions of 5-phosphoribosyl pyrophosphate are essential in Salmonella typhimurium quinolinate phosphoribosyltransferase.
    Bello Z; Stitt B; Grubmeyer C
    Biochemistry; 2010 Feb; 49(7):1377-87. PubMed ID: 20047307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid sequence of Salmonella typhimurium branched-chain amino acid aminotransferase.
    Feild MJ; Nguyen DC; Armstrong FB
    Biochemistry; 1989 Jun; 28(12):5306-10. PubMed ID: 2669973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conserved and nonconserved residues in the substrate binding site of 7,8-diaminopelargonic acid synthase from Escherichia coli are essential for catalysis.
    Sandmark J; Eliot AC; Famm K; Schneider G; Kirsch JF
    Biochemistry; 2004 Feb; 43(5):1213-22. PubMed ID: 14756557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification, characterization, and molecular cloning of a novel amine:pyruvate transaminase from Vibrio fluvialis JS17.
    Shin JS; Yun H; Jang JW; Park I; Kim BG
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):463-71. PubMed ID: 12687298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and biochemical characterization of a pathway for the degradation of 2-aminoethylphosphonate in Sinorhizobium meliloti 1021.
    Borisova SA; Christman HD; Metcalf ME; Zulkepli NA; Zhang JK; van der Donk WA; Metcalf WW
    J Biol Chem; 2011 Jun; 286(25):22283-90. PubMed ID: 21543322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of an arginine:pyruvate transaminase in arginine catabolism of Pseudomonas aeruginosa PAO1.
    Yang Z; Lu CD
    J Bacteriol; 2007 Jun; 189(11):3954-9. PubMed ID: 17416668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphonoacetate biosynthesis: in vitro detection of a novel NADP(+)-dependent phosphonoacetaldehyde-oxidizing activity in cell-extracts of the marine Roseovarius nubinhibens ISM.
    Cooley NA; Kulakova AN; Villarreal-Chiu JF; Gilbert JA; McGrath JW; Quinn JP
    Mikrobiologiia; 2011; 80(3):329-34. PubMed ID: 21861368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis of charged and potentially proton-carrying residues in the beta subunit of the proton-translocating nicotinamide nucleotide transhydrogenase from Escherichia coli. Characterization of the beta H91, beta D392, and beta K424 mutants.
    Hu X; Zhang J; Fjellström O; Bizouarn T; Rydström J
    Biochemistry; 1999 Feb; 38(5):1652-8. PubMed ID: 9931033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and properties of 2-aminoethylphosphonate:pyruvate aminotransferase from Pseudomonas aeruginosa.
    Dumora C; Lacoste AM; Cassaigne A
    Eur J Biochem; 1983 Jun; 133(1):119-25. PubMed ID: 6406228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of biosynthetic N-acetylornithine aminotransferase from Salmonella typhimurium: studies on substrate specificity and inhibitor binding.
    Rajaram V; Ratna Prasuna P; Savithri HS; Murthy MR
    Proteins; 2008 Feb; 70(2):429-41. PubMed ID: 17680699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning, mapping, and regulation of Pho regulon genes for phosphonate breakdown by the phosphonatase pathway of Salmonella typhimurium LT2.
    Jiang W; Metcalf WW; Lee KS; Wanner BL
    J Bacteriol; 1995 Nov; 177(22):6411-21. PubMed ID: 7592415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and characterization of the tyrB gene from Salmonella typhimurium.
    Nakai Y; Hayashi H; Kagamiyama H
    Biochim Biophys Acta; 1996 Sep; 1308(3):189-92. PubMed ID: 8809108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residues C123 and D58 of the 2-methylisocitrate lyase (PrpB) enzyme of Salmonella enterica are essential for catalysis.
    Grimek TL; Holden H; Rayment I; Escalante-Semerena JC
    J Bacteriol; 2003 Aug; 185(16):4837-43. PubMed ID: 12897003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gratuitous repression of avtA in Escherichia coli and Salmonella typhimurium.
    Whalen WA; Berg CM
    J Bacteriol; 1984 May; 158(2):571-4. PubMed ID: 6373721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase on the pKa values of active site residues and on the pH dependence of catalysis.
    Czerwinski RM; Harris TK; Johnson WH; Legler PM; Stivers JT; Mildvan AS; Whitman CP
    Biochemistry; 1999 Sep; 38(38):12358-66. PubMed ID: 10493803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of active site residues in E. coli ketopantoate reductase by mutagenesis and chemical rescue.
    Zheng R; Blanchard JS
    Biochemistry; 2000 Dec; 39(51):16244-51. PubMed ID: 11123955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.