BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 12107136)

  • 1. Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine-N-oxide, or dimethyl sulfoxide requires oxygen.
    Sellars MJ; Hall SJ; Kelly DJ
    J Bacteriol; 2002 Aug; 184(15):4187-96. PubMed ID: 12107136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic respiratory growth of Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi with trimethylamine N-oxide, nitrate and fumarate: ecological implications.
    Proctor LM; Gunsalus RP
    Environ Microbiol; 2000 Aug; 2(4):399-406. PubMed ID: 11234928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial periplasmic nitrate and trimethylamine-N-oxide respiration coupled to menaquinol-cytochrome c reductase (Qcr): Implications for electrogenic reduction of alternative electron acceptors.
    Garg N; Taylor AJ; Kelly DJ
    Sci Rep; 2018 Oct; 8(1):15478. PubMed ID: 30341307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate by Escherichia coli.
    Wissenbach U; Kröger A; Unden G
    Arch Microbiol; 1990; 154(1):60-6. PubMed ID: 2204318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Campylobacter jejuni RacRS system regulates fumarate utilization in a low oxygen environment.
    van der Stel AX; van Mourik A; Heijmen-van Dijk L; Parker CT; Kelly DJ; van de Lest CH; van Putten JP; Wösten MM
    Environ Microbiol; 2015 Apr; 17(4):1049-64. PubMed ID: 24707969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Escherichia coli mutant containing only demethylmenaquinone, but no menaquinone: effects on fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate respiration.
    Wissenbach U; Ternes D; Unden G
    Arch Microbiol; 1992; 158(1):68-73. PubMed ID: 1444716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Campylobacter jejuni respiratory oxidases and reductases in host colonization.
    Weingarten RA; Grimes JL; Olson JW
    Appl Environ Microbiol; 2008 Mar; 74(5):1367-75. PubMed ID: 18192421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of Campylobacter jejuni on nitrate and nitrite: electron transport to NapA and NrfA via NrfH and distinct roles for NrfA and the globin Cgb in protection against nitrosative stress.
    Pittman MS; Elvers KT; Lee L; Jones MA; Poole RK; Park SF; Kelly DJ
    Mol Microbiol; 2007 Jan; 63(2):575-90. PubMed ID: 17241202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis.
    Saffarini DA; Schultz R; Beliaev A
    J Bacteriol; 2003 Jun; 185(12):3668-71. PubMed ID: 12775705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic growth of Escherichia coli on formate by reduction of nitrate, fumarate, and trimethylamine N-oxide.
    Yamamoto I; Ishimoto M
    Z Allg Mikrobiol; 1977; 17(3):235-42. PubMed ID: 327708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron transport through nitrate and nitrite reductases in Campylobacter jejuni.
    Pittman MS; Kelly DJ
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):190-2. PubMed ID: 15667303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The function, biogenesis and regulation of the electron transport chains in Campylobacter jejuni: New insights into the bioenergetics of a major food-borne pathogen.
    Taylor AJ; Kelly DJ
    Adv Microb Physiol; 2019; 74():239-329. PubMed ID: 31126532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cloning and expression of the Escherichia coli dimethyl sulfoxide reductase operon.
    Bilous PT; Weiner JH
    J Bacteriol; 1988 Apr; 170(4):1511-8. PubMed ID: 2832366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. strain NRC-1: dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors.
    Müller JA; DasSarma S
    J Bacteriol; 2005 Mar; 187(5):1659-67. PubMed ID: 15716436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic respiration of Escherichia coli in the mouse intestine.
    Jones SA; Gibson T; Maltby RC; Chowdhury FZ; Stewart V; Cohen PS; Conway T
    Infect Immun; 2011 Oct; 79(10):4218-26. PubMed ID: 21825069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial reduction of trimethylamine oxide.
    Barrett EL; Kwan HS
    Annu Rev Microbiol; 1985; 39():131-49. PubMed ID: 3904597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration.
    McCrindle SL; Kappler U; McEwan AG
    Adv Microb Physiol; 2005; 50():147-98. PubMed ID: 16221580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens.
    Nealson KH; Moser DP; Saffarini DA
    Appl Environ Microbiol; 1995 Apr; 61(4):1551-4. PubMed ID: 11536689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimethylsulphoxide and trimethylamine oxide respiration of Proteus vulgaris. Evidence for a common terminal reductase system.
    Styrvold OB; Strøm AR
    Arch Microbiol; 1984 Nov; 140(1):74-8. PubMed ID: 6442555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formate simultaneously reduces oxidase activity and enhances respiration in Campylobacter jejuni.
    Kassem II; Candelero-Rueda RA; Esseili KA; Rajashekara G
    Sci Rep; 2017 Jan; 7():40117. PubMed ID: 28091524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.