BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12107149)

  • 1. Glycine betaine transmethylase mutant of Pseudomonas aeruginosa.
    Serra AL; Mariscotti JF; Barra JL; Lucchesi GI; Domenech CE; Lisa AT
    J Bacteriol; 2002 Aug; 184(15):4301-3. PubMed ID: 12107149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characterization of mutants affected in the osmoprotectant-dependent induction of phospholipase C in Pseudomonas aeruginosa PAO1.
    Sage AE; Vasil AI; Vasil ML
    Mol Microbiol; 1997 Jan; 23(1):43-56. PubMed ID: 9004219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Choline catabolism to glycine betaine contributes to Pseudomonas aeruginosa survival during murine lung infection.
    Wargo MJ
    PLoS One; 2013; 8(2):e56850. PubMed ID: 23457628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism.
    Wargo MJ; Szwergold BS; Hogan DA
    J Bacteriol; 2008 Apr; 190(8):2690-9. PubMed ID: 17951379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular choline and glycine betaine pools impact osmoprotection and phospholipase C production in Pseudomonas aeruginosa.
    Fitzsimmons LF; Hampel KJ; Wargo MJ
    J Bacteriol; 2012 Sep; 194(17):4718-26. PubMed ID: 22753069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa.
    Wargo MJ
    Appl Environ Microbiol; 2013 Apr; 79(7):2112-20. PubMed ID: 23354714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmoprotectant-dependent expression of plcH, encoding the hemolytic phospholipase C, is subject to novel catabolite repression control in Pseudomonas aeruginosa PAO1.
    Sage AE; Vasil ML
    J Bacteriol; 1997 Aug; 179(15):4874-81. PubMed ID: 9244277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudomonas syringae BetT is a low-affinity choline transporter that is responsible for superior osmoprotection by choline over glycine betaine.
    Chen C; Beattie GA
    J Bacteriol; 2008 Apr; 190(8):2717-25. PubMed ID: 18156257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid purification and properties of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa.
    Velasco-García R; Mújica-Jiménez C; Mendoza-Hernández G; Muñoz-Clares RA
    J Bacteriol; 1999 Feb; 181(4):1292-300. PubMed ID: 9973357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Betaine aldehyde dehydrogenase from Pseudomonas aeruginosa: cloning, over-expression in Escherichia coli, and regulation by choline and salt.
    Velasco-García R; Villalobos MA; Ramírez-Romero MA; Mújica-Jiménez C; Iturriaga G; Muñoz-Clares RA
    Arch Microbiol; 2006 Mar; 185(1):14-22. PubMed ID: 16315011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GbdR regulates Pseudomonas aeruginosa plcH and pchP transcription in response to choline catabolites.
    Wargo MJ; Ho TC; Gross MJ; Whittaker LA; Hogan DA
    Infect Immun; 2009 Mar; 77(3):1103-11. PubMed ID: 19103776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Succinate-mediated catabolite repression control on the production of glycine betaine catabolic enzymes in Pseudomonas aeruginosa PAO1 under low and elevated salinities.
    Diab F; Bernard T; Bazire A; Haras D; Blanco C; Jebbar M
    Microbiology (Reading); 2006 May; 152(Pt 5):1395-1406. PubMed ID: 16622056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Damped oscillations in the synthesis of carnitine dehydrogenase by Pseudomonas aeruginosa].
    Kleber HP; Aurich H
    Hoppe Seylers Z Physiol Chem; 1967 Dec; 348(12):1727-9. PubMed ID: 4967877
    [No Abstract]   [Full Text] [Related]  

  • 14. Pseudomonas aeruginosa synthesizes phosphatidylcholine by use of the phosphatidylcholine synthase pathway.
    Wilderman PJ; Vasil AI; Martin WE; Murphy RC; Vasil ML
    J Bacteriol; 2002 Sep; 184(17):4792-9. PubMed ID: 12169604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection, mapping, and characterization of osmoregulatory mutants of Escherichia coli blocked in the choline-glycine betaine pathway.
    Styrvold OB; Falkenberg P; Landfald B; Eshoo MW; Bjørnsen T; Strøm AR
    J Bacteriol; 1986 Mar; 165(3):856-63. PubMed ID: 3512526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shift of Choline/Betaine Pathway in Recombinant
    Balabanova L; Pentekhina I; Nedashkovskaya O; Degtyarenko A; Grigorchuk V; Yugay Y; Vasyutkina E; Kudinova O; Seitkalieva A; Slepchenko L; Son O; Tekutyeva L; Shkryl Y
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ATP-binding cassette transporter Cbc (choline/betaine/carnitine) recruits multiple substrate-binding proteins with strong specificity for distinct quaternary ammonium compounds.
    Chen C; Malek AA; Wargo MJ; Hogan DA; Beattie GA
    Mol Microbiol; 2010 Jan; 75(1):29-45. PubMed ID: 19919675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthetic pathways of glycinebetaine in Thalassiosira pseudonana; functional characterization of enzyme catalyzing three-step methylation of glycine.
    Kageyama H; Tanaka Y; Takabe T
    Plant Physiol Biochem; 2018 Jun; 127():248-255. PubMed ID: 29626705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady-state kinetic mechanism of the NADP+- and NAD+-dependent reactions catalysed by betaine aldehyde dehydrogenase from Pseudomonas aeruginosa.
    Velasco-García R; González-Segura L; Muñoz-Clares RA
    Biochem J; 2000 Dec; 352 Pt 3(Pt 3):675-83. PubMed ID: 11104673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes.
    Boch J; Kempf B; Schmid R; Bremer E
    J Bacteriol; 1996 Sep; 178(17):5121-9. PubMed ID: 8752328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.