BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12107495)

  • 1. Parvalbumin-containing neurons mediate the feedforward inhibition of rat rubrospinal neurons.
    Liu CL; Wang YJ; Chen JR; Tseng GF
    Anat Embryol (Berl); 2002 Jun; 205(3):245-54. PubMed ID: 12107495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compartmentalization of calbindin and parvalbumin in different parts of rat rubrospinal neurons.
    Wang YJ; Liu CL; Tseng GF
    Neuroscience; 1996 Sep; 74(2):427-34. PubMed ID: 8865194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perineuronal microglial reactivity following proximal and distal axotomy of rat rubrospinal neurons.
    Tseng GF; Wang YJ; Lai QC
    Brain Res; 1996 Apr; 715(1-2):32-43. PubMed ID: 8739620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental plasticity of the rubrospinal tract in the North American opossum.
    Xu XM; Martin GF
    J Comp Neurol; 1989 Jan; 279(3):368-81. PubMed ID: 2465321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The red nucleus and the rubrospinal projection in the mouse.
    Liang H; Paxinos G; Watson C
    Brain Struct Funct; 2012 Apr; 217(2):221-32. PubMed ID: 21927901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration-associated gene expression after acute cervical spinal cord injury.
    Kwon BK; Liu J; Lam C; Plunet W; Oschipok LW; Hauswirth W; Di Polo A; Blesch A; Tetzlaff W
    Spine (Phila Pa 1976); 2007 May; 32(11):1164-73. PubMed ID: 17495772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The proximity of the lesion to cell bodies determines the free radical risk induced in rat rubrospinal neurons subjected to axonal injury.
    Liu PH; Tsai HY; Chung YW; Wang YJ; Tseng GF
    Anat Embryol (Berl); 2004 Mar; 207(6):439-51. PubMed ID: 14767765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometry of rubrospinal, rubroolivary, and local circuit neurons in the macaque red nucleus.
    Burman K; Darian-Smith C; Darian-Smith I
    J Comp Neurol; 2000 Jul; 423(2):197-219. PubMed ID: 10867654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphometric and experimental studies of the red nucleus in the albino rat.
    Strominger RN; McGiffen JE; Strominger NL
    Anat Rec; 1987 Dec; 219(4):420-8. PubMed ID: 3448957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colocalization of fixative-modified glutamate and glutaminase but not GAD in rubrospinal neurons.
    Beitz AJ; Ecklund LJ
    J Comp Neurol; 1988 Aug; 274(2):265-79. PubMed ID: 2463289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal cord plasticity in response to unilateral inhibition of the rat motor cortex during development: changes to gene expression, muscle afferents and the ipsilateral corticospinal projection.
    Clowry GJ; Davies BM; Upile NS; Gibson CL; Bradley PM
    Eur J Neurosci; 2004 Nov; 20(10):2555-66. PubMed ID: 15548199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the magnocellular portion of the red nucleus following thoracic hemisection in the neonatal and adult rat.
    Prendergast J; Stelzner DJ
    J Comp Neurol; 1976 Mar; 166(2):163-71. PubMed ID: 1262553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rubral astrocytic reactions to proximal and distal axotomy of rubrospinal neurons in the rat.
    Tseng GF; Wang YJ; Lai QC
    Brain Res; 1996 Dec; 742(1-2):115-28. PubMed ID: 9117385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-HT1A receptor mRNA and immunoreactivity in the rat medial septum/diagonal band of Broca-relationships to GABAergic and cholinergic neurons.
    Lüttgen M; Ogren SO; Meister B
    J Chem Neuroanat; 2005 Mar; 29(2):93-111. PubMed ID: 15652697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrinsic inhibitory innervation to rubral neurons in rat brain-stem slices.
    Fu YS; Tseng GF; Yin HS
    Exp Neurol; 1996 Jan; 137(1):142-50. PubMed ID: 8566205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prenatal descent of rubrospinal fibers through the spinal cord of the rat.
    Lakke EA; Marani E
    J Comp Neurol; 1991 Dec; 314(1):67-78. PubMed ID: 1797875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pattern differentiation of excitatory and inhibitory synaptic inputs on distinct neuronal types in the rat caudal nucleus of the tractus solitarius.
    Yoshioka M; Okada T; Inoue K; Kawai Y
    Neurosci Res; 2006 Jul; 55(3):300-15. PubMed ID: 16716422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Neuronal mechanisms of red nucleus interaction with brain stem structures].
    Fanardzhian VV; Sarkisian DS
    Neirofiziologiia; 1984; 16(5):665-78. PubMed ID: 6096738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gamma-aminobutyric acid-containing sympathetic preganglionic neurons in rat thoracic spinal cord send their axons to the superior cervical ganglion.
    Ito T; Hioki H; Nakamura K; Tanaka Y; Nakade H; Kaneko T; Iino S; Nojyo Y
    J Comp Neurol; 2007 May; 502(1):113-25. PubMed ID: 17335042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of GABA-immunoreactive premotor neurons projecting to the trigeminal motor nucleus in the rat.
    Takahashi O; Satoda T; Uchida T
    J Hirnforsch; 1995; 36(2):203-8. PubMed ID: 7615924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.