BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 12107500)

  • 41. A morphological study of the vomeronasal organ and the accessory olfactory bulb in the Korean roe deer, Capreolus pygargus.
    Park C; Ahn M; Lee JY; Lee S; Yun Y; Lim YK; Taniguchi K; Shin T
    Acta Histochem; 2014 Jan; 116(1):258-64. PubMed ID: 24055195
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lactosamine modulates the rate of migration of GnRH neurons during mouse development.
    Bless E; Raitcheva D; Henion TR; Tobet S; Schwarting GA
    Eur J Neurosci; 2006 Aug; 24(3):654-60. PubMed ID: 16930397
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pheromone detection by mammalian vomeronasal neurons.
    Zufall F; Kelliher KR; Leinders-Zufall T
    Microsc Res Tech; 2002 Aug; 58(3):251-60. PubMed ID: 12203702
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Light microscopic and ultrastructural observations on the vomeronasal organ of Anoura (Chiroptera: Phyllostomidae).
    Bhatnagar KP; Smith TD
    Anat Rec (Hoboken); 2007 Nov; 290(11):1341-54. PubMed ID: 17929290
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Main Olfactory and Vomeronasal Epithelium Are Differently Affected in Niemann-Pick Disease Type C1.
    Witt M; Thiemer R; Meyer A; Schmitt O; Wree A
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30424529
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional synapse formation between cultured rat accessory olfactory bulb neurons and vomeronasal pockets.
    Muramoto K; Huang GZ; Taniguchi M; Kaba H
    Neuroscience; 2006 Aug; 141(1):475-86. PubMed ID: 16677769
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Organization of the chemosensory neuroepithelium of the vomeronasal organ of the Scandinavian moose Alces alces.
    Vedin V; Eriksson B; Berghard A
    Brain Res; 2010 Jan; 1306():53-61. PubMed ID: 19833105
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Convergence of olfactory and vomeronasal projections in the rat basal telencephalon.
    Pro-Sistiaga P; Mohedano-Moriano A; Ubeda-Bañon I; Del Mar Arroyo-Jimenez M; Marcos P; Artacho-Pérula E; Crespo C; Insausti R; Martinez-Marcos A
    J Comp Neurol; 2007 Oct; 504(4):346-62. PubMed ID: 17663431
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Scanning electron microscopic studies of the surface morphology of the vomeronasal epithelium and olfactory epithelium of garter snakes.
    Wang RT; Halpern M
    Am J Anat; 1980 Apr; 157(4):399-428. PubMed ID: 7405875
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure and function of long-lived olfactory organotypic cultures from postnatal mice.
    Josephson EM; Yilma S; Vodyanoy V; Morrison EE
    J Neurosci Res; 2004 Mar; 75(5):642-53. PubMed ID: 14991840
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Is the Mole Rat Vomeronasal Organ Functional?
    Dennis JC; Stilwell NK; Smith TD; Park TJ; Bhatnagar KP; Morrison EE
    Anat Rec (Hoboken); 2020 Feb; 303(2):318-329. PubMed ID: 30614661
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lectin histochemical studies on the olfactory epithelium and vomeronasal organ in the Japanese striped snake, Elaphe quadrivirgata.
    Kondoh D; Yamamoto Y; Nakamuta N; Taniguchi K; Taniguchi K
    J Morphol; 2010 Oct; 271(10):1197-203. PubMed ID: 20597100
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Timing of neuronal intermediate filament proteins expression in the mouse vomeronasal organ during pre- and postnatal development. An immunohistochemical study.
    Merigo F; Mucignat-Caretta C; Zancanaro C
    Chem Senses; 2005 Oct; 30(8):707-17. PubMed ID: 16179384
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Olfactory metamorphosis in the Coastal Giant Salamander (Dicamptodon tenebrosus).
    Stuelpnagel JT; Reiss JO
    J Morphol; 2005 Oct; 266(1):22-45. PubMed ID: 16121394
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distribution of beta 2-microglobulin in olfactory epithelium: a proliferating neuroepithelium not protected by a blood-tissue barrier.
    Whelan JP; Wysocki CJ; Lampson LA
    J Immunol; 1986 Oct; 137(8):2567-71. PubMed ID: 3531338
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Expression of neuron-specific enolase and olfactory marker protein in the developing olfactory mucosa of human fetuses].
    Shi L; Chen Y; Ren X; Zhang HB; Ding YP
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2003 Jun; 38(3):180-2. PubMed ID: 14515774
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Maturation of newly born vomeronasal neurons in the adult mice.
    de la Rosa-Prieto C; Saiz-Sánchez D; Úbeda-Bañón I; Mohedano-Moriano A; Martínez-Marcos A
    Neuroreport; 2011 Jan; 22(1):28-32. PubMed ID: 21127444
    [TBL] [Abstract][Full Text] [Related]  

  • 58. NTP Toxicology and Carcinogenesis Studies of Isobutyraldehyde (CAS No. 78-84-2) in F344/N Rats and B6C3F1 Mice (Inhalation Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1999 Feb; 472():1-242. PubMed ID: 12579201
    [TBL] [Abstract][Full Text] [Related]  

  • 59. BMP mRNA and protein expression in the developing mouse olfactory system.
    Peretto P; Cummings D; Modena C; Behrens M; Venkatraman G; Fasolo A; Margolis FL
    J Comp Neurol; 2002 Sep; 451(3):267-78. PubMed ID: 12210138
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Immunohistochemical study of human fetal vomerona structures the nasal septum, by applying neuron-specific beta3-tubulin antibodies].
    Kharlamova AS; Barabanov VM; Savel'ev SV
    Arkh Patol; 2011; 73(2):18-22. PubMed ID: 21695983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.