BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 12108101)

  • 1. [Structural changes in spinal cord gray matter induced by gravitational overloads].
    Pashchenko PS; Risman BV
    Morfologiia; 2002; 121(1):49-54. PubMed ID: 12108101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Changes in the pancreas structure after exposure of the body to gravitational overloads].
    Pashchenko PS; Zakharova IV
    Morfologiia; 2006; 129(1):62-7. PubMed ID: 17201323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural rearrangements in the gray matter of the spinal cord after gravitational overloading.
    Pashchenko PS; Risman BV
    Neurosci Behav Physiol; 2003 May; 33(4):369-73. PubMed ID: 12774839
    [No Abstract]   [Full Text] [Related]  

  • 4. [The structural organization of the normal rat area postrema and under conditions of chronic exposure to gravitational loads].
    Pashchenko PS; Sukhoterin AF
    Morfologiia; 2000; 117(2):36-41. PubMed ID: 10853249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of mercury in rat spinal cord and dorsal root ganglia after exposure to mercury vapor.
    Schiønning JD; Eide R; Møller-Madsen B; Ernst E
    Exp Mol Pathol; 1993 Jun; 58(3):215-28. PubMed ID: 8519348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of cytochrome oxidase in the mammalian spinal cord and dorsal root ganglia, with quantitative analysis of ventral horn cells in monkeys.
    Wong-Riley MT; Kageyama GH
    J Comp Neurol; 1986 Mar; 245(1):41-61. PubMed ID: 2420838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Structural modifications of the thoracic region of vagus and sympathetic trunk ganglia after exposure to gravitational overloads].
    Pashchenko PS; Zhukov AA
    Morfologiia; 2005; 128(6):28-33. PubMed ID: 16755785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Changes in the spinal cord of rats following the effects of single and multiple gravitational overloads of the "head-pelvis" direction].
    Sokolova ZA
    Arkh Anat Gistol Embriol; 1975 Aug; 69(8):51-5. PubMed ID: 1167107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Canine spinal cord neuron and axon myelin sheath morphometry.
    de Francischini Carvalho AC; Pacheco MR; Baraldi Artoni SM; Mateus O
    Anat Histol Embryol; 2006 Oct; 35(5):284-6. PubMed ID: 16968245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [MORPHOLOGICAL ASPECTS OF CHANGES IN THE SPINAL GRAY MATTER DUE TO G-LOADS IN EXPERIMENT].
    Pashchenko PS; Risman BV
    Aviakosm Ekolog Med; 2015; 49(3):51-5. PubMed ID: 26292426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Electron microscopic study of experimental allergic encephalomyelitis in dogs. I].
    Khoruzhaia TA; Bardakhch'ian EA
    Tsitol Genet; 1978; 12(4):307-10. PubMed ID: 705881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal cord transection--no loss of distal ventral horn neurons. Modern stereological techniques reveal no transneuronal changes in the ventral horns of the mouse lumbar spinal cord after thoracic cord transection.
    Bjugn R; Nyengaard JR; Rosland JH
    Exp Neurol; 1997 Nov; 148(1):179-86. PubMed ID: 9400423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal apoptosis and necrosis following spinal cord ischemia in the rat.
    Kato H; Kanellopoulos GK; Matsuo S; Wu YJ; Jacquin MF; Hsu CY; Kouchoukos NT; Choi DW
    Exp Neurol; 1997 Dec; 148(2):464-74. PubMed ID: 9417826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of early locomotor network dysfunction following a focal lesion in an in vitro model of spinal injury.
    Taccola G; Mladinic M; Nistri A
    Eur J Neurosci; 2010 Jan; 31(1):60-78. PubMed ID: 20092556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microcirculatory disturbances during the early phase following experimental spinal cord trauma in the rat.
    Sasaki S; Schneider H; Renz S
    Adv Neurol; 1978; 20():423-31. PubMed ID: 676906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Spinal cord regeneration in rats after thoracic segmentectomy: growth and regeneration of nerve fibers].
    Iarygin VN; Banin VV; Iarygin KN; Briukhovetskiĭ AS
    Morfologiia; 2006; 129(1):30-8. PubMed ID: 17201316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine structural changes of myelin sheaths after axonal degeneration in the spinal cord.
    Lampert P; Cressman M
    J Neuropathol Exp Neurol; 1967 Jan; 26(1):156. PubMed ID: 6022145
    [No Abstract]   [Full Text] [Related]  

  • 18. Extensive glial apoptosis develops early after hypoxic-dysmetabolic insult to the neonatal rat spinal cord in vitro.
    Kuzhandaivel A; Margaryan G; Nistri A; Mladinic M
    Neuroscience; 2010 Aug; 169(1):325-38. PubMed ID: 20466038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connexin43 and astrocytic gap junctions in the rat spinal cord after acute compression injury.
    Theriault E; Frankenstein UN; Hertzberg EL; Nagy JI
    J Comp Neurol; 1997 Jun; 382(2):199-214. PubMed ID: 9183689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in nerve cells and myelinated fibers in spinal cord injury.
    Wagner FC; Dohrmann GJ
    Surg Neurol; 1975 Mar; 3(3):125-31. PubMed ID: 1124482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.