These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 12108777)

  • 1. Modified ionic models of cardiac tissue for efficient large scale computations.
    Bernus O; Verschelde H; Panfilov AV
    Phys Med Biol; 2002 Jun; 47(11):1947-59. PubMed ID: 12108777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A conduction velocity adapted eikonal model for electrophysiology problems with re-excitability evaluation.
    Corrado C; Zemzemi N
    Med Image Anal; 2018 Jan; 43():186-197. PubMed ID: 29128759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymptotics of conduction velocity restitution in models of electrical excitation in the heart.
    Simitev RD; Biktashev VN
    Bull Math Biol; 2011 Jan; 73(1):72-115. PubMed ID: 20204709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vulnerability to re-entry in simulated two-dimensional cardiac tissue: effects of electrical restitution and stimulation sequence.
    Tran DX; Yang MJ; Weiss JN; Garfinkel A; Qu Z
    Chaos; 2007 Dec; 17(4):043115. PubMed ID: 18163779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational model of cardiac electromechanics.
    Nickerson D; Niederer S; Stevens C; Nash M; Hunter P
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5311-4. PubMed ID: 17946694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zebrafish heart as a model for human cardiac electrophysiology.
    Vornanen M; Hassinen M
    Channels (Austin); 2016; 10(2):101-10. PubMed ID: 26671745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling.
    Shaw RM; Rudy Y
    Circ Res; 1997 Nov; 81(5):727-41. PubMed ID: 9351447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study.
    Qu Z; Weiss JN; Garfinkel A
    Am J Physiol; 1999 Jan; 276(1):H269-83. PubMed ID: 9887041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity.
    Fenton FH; Cherry EM; Hastings HM; Evans SJ
    Chaos; 2002 Sep; 12(3):852-892. PubMed ID: 12779613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BeatBox-HPC simulation environment for biophysically and anatomically realistic cardiac electrophysiology.
    Antonioletti M; Biktashev VN; Jackson A; Kharche SR; Stary T; Biktasheva IV
    PLoS One; 2017; 12(5):e0172292. PubMed ID: 28467407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computer model of cardiac electrical activity for the simulation of arrhythmias.
    Virag N; Vesin JM; Kappenberger L
    Pacing Clin Electrophysiol; 1998 Nov; 21(11 Pt 2):2366-71. PubMed ID: 9825349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole heart action potential duration restitution properties in cardiac patients: a combined clinical and modelling study.
    Nash MP; Bradley CP; Sutton PM; Clayton RH; Kallis P; Hayward MP; Paterson DJ; Taggart P
    Exp Physiol; 2006 Mar; 91(2):339-54. PubMed ID: 16452121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approximate analytical solutions for excitation and propagation in cardiac tissue.
    Greene D; Shiferaw Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042719. PubMed ID: 25974539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle.
    Spach MS; Miller WT; Miller-Jones E; Warren RB; Barr RC
    Circ Res; 1979 Aug; 45(2):188-204. PubMed ID: 445703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amplitude equation approach to spatiotemporal dynamics of cardiac alternans.
    Echebarria B; Karma A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051911. PubMed ID: 18233691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational cardiac electrophysiology: implementing mathematical models of cardiomyocytes to simulate action potentials of the heart.
    Bell MM; Cherry EM
    Methods Mol Biol; 2015; 1299():65-74. PubMed ID: 25836575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initiation of re-entry in an excitable medium: structural investigation of cardiac tissue using a genetic algorithm.
    Scarle S; Clayton RH
    Chaos; 2006 Sep; 16(3):033115. PubMed ID: 17014220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac contraction induces discordant alternans and localized block.
    Radszuweit M; Alvarez-Lacalle E; Bär M; Echebarria B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022703. PubMed ID: 25768527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial potentials of selected cardiac muscle regions and heart activity model based on single fibres.
    Janicki JS; Leoński W; Jagielski J
    Med Eng Phys; 2009 Dec; 31(10):1276-82. PubMed ID: 19762270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulations of the cardiac action potential based on the Hodgkin-Huxley kinetics with the use of Microsoft Excel spreadsheets.
    Wu SN
    Chin J Physiol; 2004 Mar; 47(1):15-22. PubMed ID: 15239590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.