BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 12109688)

  • 1. Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads.
    Betigeri SS; Neau SH
    Biomaterials; 2002 Sep; 23(17):3627-36. PubMed ID: 12109688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular weight and degree of deacetylation effects on lipase-loaded chitosan bead characteristics.
    Alsarra IA; Betigeri SS; Zhang H; Evans BA; Neau SH
    Biomaterials; 2002 Sep; 23(17):3637-44. PubMed ID: 12109689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of preparative parameters on the properties of chitosan hydrogel beads containing Candida rugosa lipase.
    Alsarra IA; Neau SH; Howard MA
    Biomaterials; 2004 Jun; 25(13):2645-55. PubMed ID: 14751751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release characteristics of chitosan treated alginate beads: I. Sustained release of a macromolecular drug from chitosan treated alginate beads.
    Sezer AD; Akbuğa J
    J Microencapsul; 1999; 16(2):195-203. PubMed ID: 10080113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The release behavior of brilliant blue from calcium-alginate gel beads coated by chitosan: the preparation method effect.
    Shu XZ; Zhu KJ
    Eur J Pharm Biopharm; 2002 Mar; 53(2):193-201. PubMed ID: 11880003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of Brassica oleracea chlorophyllase 1 (BoCLH1) and Candida rugosa lipase (CRL) in magnetic alginate beads: an enzymatic evaluation in the corresponding proteins.
    Yang CH; Yen CC; Jheng JJ; Wang CY; Chen SS; Huang PY; Huang KS; Shaw JF
    Molecules; 2014 Aug; 19(8):11800-15. PubMed ID: 25105918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix molecular weight cut-off for encapsulation of carbonic anhydrase in polyelectrolyte beads.
    Simsek-Ege FA; Bond GM; Stringer J
    J Biomater Sci Polym Ed; 2002; 13(11):1175-87. PubMed ID: 12518798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gelatin blends with alginate: gels for lipase immobilization and purification.
    Fadnavis NW; Sheelu G; Kumar BM; Bhalerao MU; Deshpande AA
    Biotechnol Prog; 2003; 19(2):557-64. PubMed ID: 12675601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-temperature electron microscopy for the study of polysaccharide ultrastructures in hydrogels. II. Effect of temperature on the structure of Ca2+-alginate beads.
    Serp D; Mueller M; Von Stockar U; Marison IW
    Biotechnol Bioeng; 2002 Aug; 79(3):253-9. PubMed ID: 12115413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups.
    Chiou SH; Wu WT
    Biomaterials; 2004 Jan; 25(2):197-204. PubMed ID: 14585707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Yarrowia lipolytica lipase immobilization yield of entrapment, adsorption, and covalent bond techniques.
    Alloue WA; Destain J; El Medjoub T; Ghalfi H; Kabran P; Thonart P
    Appl Biochem Biotechnol; 2008 Jul; 150(1):51-63. PubMed ID: 18327546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alginate as immobilization matrix and stabilizing agent in a two-phase liquid system: application in lipase-catalysed reactions.
    Hertzberg S; Kvittingen L; Anthonsen T; Skjåk-Braek G
    Enzyme Microb Technol; 1992 Jan; 14(1):42-7. PubMed ID: 1367810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan-alginate multilayer beads for gastric passage and controlled intestinal release of protein.
    Anal AK; Bhopatkar D; Tokura S; Tamura H; Stevens WF
    Drug Dev Ind Pharm; 2003 Jul; 29(6):713-24. PubMed ID: 12889789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs.
    Lin YH; Liang HF; Chung CK; Chen MC; Sung HW
    Biomaterials; 2005 May; 26(14):2105-13. PubMed ID: 15576185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microcapsules of alginate-chitosan. II. A study of capsule stability and permeability.
    Gåserød O; Sannes A; Skjåk-Braek G
    Biomaterials; 1999 Apr; 20(8):773-83. PubMed ID: 10353660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of superparamagnetic Fe3O4@alginate/chitosan nanospheres for Candida rugosa lipase immobilization and utilization of layer-by-layer assembly to enhance the stability of immobilized lipase.
    Liu X; Chen X; Li Y; Wang X; Peng X; Zhu W
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5169-78. PubMed ID: 22985256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of Enzyme Co-Immobilization with Sodium Alginate and Glutaraldehyde-Activated Chitosan Beads.
    Gür SD; İdil N; Aksöz N
    Appl Biochem Biotechnol; 2018 Feb; 184(2):538-552. PubMed ID: 28762007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan-alginate beads as encapsulating agents for Yarrowia lipolytica lipase: Morphological, physico-chemical and kinetic characteristics.
    Pereira ADS; Diniz MM; De Jong G; Gama Filho HS; Dos Anjos MJ; Finotelli PV; Fontes-Sant'Ana GC; Amaral PFF
    Int J Biol Macromol; 2019 Oct; 139():621-630. PubMed ID: 31381917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of chitosan to increase the stability of calcium alginate beads with entrapped yeast cells.
    Li X
    Biotechnol Appl Biochem; 1996 Jun; 23(3):269-72. PubMed ID: 8679112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alginate/bacterial cellulose nanocomposite beads prepared using Gluconacetobacter xylinus and their application in lipase immobilization.
    Kim JH; Park S; Kim H; Kim HJ; Yang YH; Kim YH; Jung SK; Kan E; Lee SH
    Carbohydr Polym; 2017 Feb; 157():137-145. PubMed ID: 27987845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.