These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 12109737)
1. Effect of adsorption to elemental iron on the transformation of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine in solution. Oh SY; Cha DK; Kim BJ; Chiu P Environ Toxicol Chem; 2002 Jul; 21(7):1384-9. PubMed ID: 12109737 [TBL] [Abstract][Full Text] [Related]
2. Enhancing Fenton oxidation of TNT and RDX through pretreatment with zero-valent iron. Oh SY; Chiu PC; Kim BJ; Cha DK Water Res; 2003 Oct; 37(17):4275-83. PubMed ID: 12946911 [TBL] [Abstract][Full Text] [Related]
3. Enhancing oxidation of TNT and RDX in wastewater: pre-treatment with elemental iron. Oh SY; Cha DK; Chiu PC; Kim BJ Water Sci Technol; 2003; 47(10):93-9. PubMed ID: 12862222 [TBL] [Abstract][Full Text] [Related]
4. Reductive transformation of 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and nitroglycerin by pyrite and magnetite. Oh SY; Chiu PC; Cha DK J Hazard Mater; 2008 Oct; 158(2-3):652-5. PubMed ID: 18328622 [TBL] [Abstract][Full Text] [Related]
5. Biodegradation and mineralization of isotopically labeled TNT and RDX in anaerobic marine sediments. Ariyarathna T; Vlahos P; Smith RW; Fallis S; Groshens T; Tobias C Environ Toxicol Chem; 2017 May; 36(5):1170-1180. PubMed ID: 27791286 [TBL] [Abstract][Full Text] [Related]
6. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces. Jaramillo AM; Douglas TA; Walsh ME; Trainor TP Chemosphere; 2011 Aug; 84(8):1058-65. PubMed ID: 21601233 [TBL] [Abstract][Full Text] [Related]
7. Abiotic transformation of high explosives by freshly precipitated iron minerals in aqueous FeII solutions. Boparai HK; Comfort SD; Satapanajaru T; Szecsody JE; Grossl PR; Shea PJ Chemosphere; 2010 May; 79(8):865-72. PubMed ID: 20226494 [TBL] [Abstract][Full Text] [Related]
8. Reductive transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, and methylenedinitramine with elemental iron. Oh SY; Cha DK; Kim BJ; Chiu PC Environ Toxicol Chem; 2005 Nov; 24(11):2812-9. PubMed ID: 16398117 [TBL] [Abstract][Full Text] [Related]
9. Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies. Ariyarathna T; Vlahos P; Tobias C; Smith R Environ Toxicol Chem; 2016 Jan; 35(1):47-55. PubMed ID: 26178383 [TBL] [Abstract][Full Text] [Related]
10. Remediating munitions-contaminated soil with zerovalent iron and cationic surfactants. Park J; Comfort SD; Shea PJ; Machacek TA J Environ Qual; 2004; 33(4):1305-13. PubMed ID: 15254112 [TBL] [Abstract][Full Text] [Related]
11. Dissolution and transport of TNT, RDX, and composition B in saturated soil columns. Dontsova KM; Yost SL; Simunek J; Pennington JC; Williford CW J Environ Qual; 2006; 35(6):2043-54. PubMed ID: 17071873 [TBL] [Abstract][Full Text] [Related]
12. Reduction of 2,4,6-trinitrotoluene by iron metal: kinetic controls on product distributions in batch experiments. Bandstra JZ; Miehr R; Johnson RL; Tratnyek PG Environ Sci Technol; 2005 Jan; 39(1):230-8. PubMed ID: 15667099 [TBL] [Abstract][Full Text] [Related]
13. Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine by Fe(II) bound to magnetite. Gregory KB; Larese-Casanova P; Parkin GF; Scherer MM Environ Sci Technol; 2004 Mar; 38(5):1408-14. PubMed ID: 15046341 [TBL] [Abstract][Full Text] [Related]
14. Enhancing the attenuation of explosives in surface soils at military facilities: combined sorption and biodegradation. Fuller ME; Hatzinger PB; Rungmakol D; Schuster RL; Steffan RJ Environ Toxicol Chem; 2004 Feb; 23(2):313-24. PubMed ID: 14982377 [TBL] [Abstract][Full Text] [Related]
15. Reduction and persulfate oxidation of nitro explosives in contaminated soils using Fe-bearing materials. Oh SY; Yoon HS; Jeong TY; Kim SD; Kim DW Environ Sci Process Impacts; 2016 Jul; 18(7):863-71. PubMed ID: 27327861 [TBL] [Abstract][Full Text] [Related]
16. Sequential electrolytic oxidation and reduction of aqueous phase energetic compounds. Gilbert DM; Sale TC Environ Sci Technol; 2005 Dec; 39(23):9270-7. PubMed ID: 16382952 [TBL] [Abstract][Full Text] [Related]
17. Electrolytic transformation of ordinance related compounds (ORCs) in groundwater: laboratory mass balance studies. Wani AH; O'Neal BR; Gilbert DM; Gent DB; Davis JL Chemosphere; 2006 Feb; 62(5):689-98. PubMed ID: 16081140 [TBL] [Abstract][Full Text] [Related]
18. Dissolution of explosive compounds TNT, RDX, and HMX under continuous flow conditions. Wang C; Fuller ME; Schaefer C; Caplan JL; Jin Y J Hazard Mater; 2012 May; 217-218():187-93. PubMed ID: 22480704 [TBL] [Abstract][Full Text] [Related]
19. Dissolution, sorption, and kinetics involved in systems containing explosives, water, and soil. Larson SL; Martin WA; Escalon BL; Thompson M Environ Sci Technol; 2008 Feb; 42(3):786-92. PubMed ID: 18323103 [TBL] [Abstract][Full Text] [Related]
20. Multivariate functions for predicting the sorption of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-tricyclohexane (RDX) among taxonomically distinct soils. Katseanes CK; Chappell MA; Hopkins BG; Durham BD; Price CL; Porter BE; Miller LF J Environ Manage; 2016 Nov; 182():101-110. PubMed ID: 27454101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]