BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 12110428)

  • 1. Site- and compartment-specific changes in bone with hindlimb unloading in mature adult rats.
    Bloomfield SA; Allen MR; Hogan HA; Delp MD
    Bone; 2002 Jul; 31(1):149-57. PubMed ID: 12110428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hindlimb unloading has a greater effect on cortical compared with cancellous bone in mature female rats.
    Allen MR; Bloomfield SA
    J Appl Physiol (1985); 2003 Feb; 94(2):642-50. PubMed ID: 12391029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse.
    Shirazi-Fard Y; Kupke JS; Bloomfield SA; Hogan HA
    Bone; 2013 Jan; 52(1):433-43. PubMed ID: 23017660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Previous exposure to simulated microgravity does not exacerbate bone loss during subsequent exposure in the proximal tibia of adult rats.
    Shirazi-Fard Y; Anthony RA; Kwaczala AT; Judex S; Bloomfield SA; Hogan HA
    Bone; 2013 Oct; 56(2):461-73. PubMed ID: 23871849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential responses of mechanosensitive osteocyte proteins in fore- and hindlimbs of hindlimb-unloaded rats.
    Metzger CE; Brezicha JE; Elizondo JP; Narayanan SA; Hogan HA; Bloomfield SA
    Bone; 2017 Dec; 105():26-34. PubMed ID: 28782619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulated resistance training, but not alendronate, increases cortical bone formation and suppresses sclerostin during disuse.
    Macias BR; Swift JM; Nilsson MI; Hogan HA; Bouse SD; Bloomfield SA
    J Appl Physiol (1985); 2012 Mar; 112(5):918-25. PubMed ID: 22174402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulated resistance training during hindlimb unloading abolishes disuse bone loss and maintains muscle strength.
    Swift JM; Nilsson MI; Hogan HA; Sumner LR; Bloomfield SA
    J Bone Miner Res; 2010 Mar; 25(3):564-74. PubMed ID: 19653816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. β-1 adrenergic agonist mitigates unloading-induced bone loss by maintaining formation.
    Swift JM; Hogan HA; Bloomfield SA
    Med Sci Sports Exerc; 2013 Sep; 45(9):1665-73. PubMed ID: 23470310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abaloparatide treatment increases bone formation, bone density and bone strength without increasing bone resorption in a rat model of hindlimb unloading.
    Teguh DA; Nustad JL; Craven AE; Brooks DJ; Arlt H; Hu D; Baron R; Lanske B; Bouxsein ML
    Bone; 2021 Mar; 144():115801. PubMed ID: 33338664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-body vibration and resistance exercise prevent long-term hindlimb unloading-induced bone loss: independent and interactive effects.
    Li Z; Tan C; Wu Y; Ding Y; Wang H; Chen W; Zhu Y; Ma H; Yang H; Liang W; Jiang S; Wang D; Wang L; Tang G; Wang J
    Eur J Appl Physiol; 2012 Nov; 112(11):3743-53. PubMed ID: 22371114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential bone and muscle recovery following hindlimb unloading in skeletally mature male rats.
    Allen MR; Hogan HA; Bloomfield SA
    J Musculoskelet Neuronal Interact; 2006; 6(3):217-25. PubMed ID: 17142941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone and hormonal changes induced by skeletal unloading in the mature male rat.
    Dehority W; Halloran BP; Bikle DD; Curren T; Kostenuik PJ; Wronski TJ; Shen Y; Rabkin B; Bouraoui A; Morey-Holton E
    Am J Physiol; 1999 Jan; 276(1 Pt 1):E62-9. PubMed ID: 9886951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats.
    Jing D; Cai J; Wu Y; Shen G; Li F; Xu Q; Xie K; Tang C; Liu J; Guo W; Wu X; Jiang M; Luo E
    J Bone Miner Res; 2014 Oct; 29(10):2250-61. PubMed ID: 24753111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparison of effects of Wujia Bugu decoction) and alendronate sodium on protection the bone loss of hindlimb unloaded rats].
    Fu Q; Hu SM; Yang JJ; Hao XJ; Zhu B; Wang Q; Wu ZR; Li J
    Zhongguo Gu Shang; 2010 Jul; 23(7):524-8. PubMed ID: 20701129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Evaluation of bone architecture and biomechanic properties by peripheral quantitative computed tomography in rats].
    Xing XP; Xia WB; Meng XW; Zhou XY; Hu YY; Liu HC
    Zhonghua Yi Xue Za Zhi; 2003 May; 83(9):791-5. PubMed ID: 12899761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-dependent bone loss and recovery during hindlimb unloading and subsequent reloading in rats.
    Cunningham HC; West DWD; Baehr LM; Tarke FD; Baar K; Bodine SC; Christiansen BA
    BMC Musculoskelet Disord; 2018 Jul; 19(1):223. PubMed ID: 30021585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vitamin E provides protection for bone in mature hindlimb unloaded male rats.
    Smith BJ; Lucas EA; Turner RT; Evans GL; Lerner MR; Brackett DJ; Stoecker BJ; Arjmandi BH
    Calcif Tissue Int; 2005 Apr; 76(4):272-9. PubMed ID: 15742232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreases in bone blood flow and bone material properties in aging Fischer-344 rats.
    Bloomfield SA; Hogan HA; Delp MD
    Clin Orthop Relat Res; 2002 Mar; (396):248-57. PubMed ID: 11859250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight.
    Morey-Holton ER; Globus RK
    Bone; 1998 May; 22(5 Suppl):83S-88S. PubMed ID: 9600759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moderate tibia axial loading promotes discordant response of bone composition parameters and mechanical properties in a hindlimb unloading rat model.
    Yang PF; Huang LW; Nie XT; Yang Y; Wang Z; Ren L; Xu HY; Shang P
    J Musculoskelet Neuronal Interact; 2018 Jun; 18(2):152-164. PubMed ID: 29855437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.