BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 12111043)

  • 1. Angiotensin II type 1 receptor expression in human coronary arteries with variable degrees of atherosclerosis.
    Gross CM; Gerbaulet S; Quensel C; Krämer J; Mittelmeier HO; Luft FC; Dietz R
    Basic Res Cardiol; 2002 Jul; 97(4):327-33. PubMed ID: 12111043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of urotensin-II in human coronary atherosclerosis.
    Hassan GS; Douglas SA; Ohlstein EH; Giaid A
    Peptides; 2005 Dec; 26(12):2464-72. PubMed ID: 16026900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estrogen receptor-1 genotype is related to coronary intima thickness in young to middle-aged women.
    Henttonen AT; Kortelainen ML; Kunnas TA; Nikkari ST
    Scand J Clin Lab Invest; 2007; 67(4):380-6. PubMed ID: 17558892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Expression of urotensinII in human coronary artery and coronary atherosclerosis].
    Tu XW; Liu YF; Li ZL; Wu HC; Lu Q; Tang CS
    Di Yi Jun Yi Da Xue Xue Bao; 2003 Jun; 23(6):572-4. PubMed ID: 12810379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in ET(A)-, AT1- and AT2-receptors in the phenotypically transformed intimal smooth muscle layer of human atherosclerotic coronary arteries.
    Katugampola SD; Davenport AP
    J Cardiovasc Pharmacol; 2000 Nov; 36(5 Suppl 1):S395-6. PubMed ID: 11078431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of carotid intima-media thickness in assessment of atherosclerosis: an autopsy study.
    Jashnani KD; Kulkarni RR; Deshpande JR
    Indian Heart J; 2005; 57(4):319-23. PubMed ID: 16350677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased angiotensin II type 1 receptor expression in temporal arteries from patients with giant cell arteritis.
    Dimitrijevic I; Malmsjö M; Andersson C; Rissler P; Edvinsson L
    Ophthalmology; 2009 May; 116(5):990-6. PubMed ID: 19410957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-reactive protein upregulates angiotensin type 1 receptors in vascular smooth muscle.
    Wang CH; Li SH; Weisel RD; Fedak PW; Dumont AS; Szmitko P; Li RK; Mickle DA; Verma S
    Circulation; 2003 Apr; 107(13):1783-90. PubMed ID: 12665485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adiponectin/T-cadherin and apelin/APJ expression in human arteries and periadventitial fat: implication of local adipokine signaling in atherosclerosis?
    Kostopoulos CG; Spiroglou SG; Varakis JN; Apostolakis E; Papadaki HH
    Cardiovasc Pathol; 2014; 23(3):131-8. PubMed ID: 24675084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells.
    Jaffe IZ; Mendelsohn ME
    Circ Res; 2005 Apr; 96(6):643-50. PubMed ID: 15718497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age and fibroplasia as preconditions for atheronecrosis in human coronary arteries.
    Tracy RE; Kissling GE
    Arch Pathol Lab Med; 1987 Oct; 111(10):957-63. PubMed ID: 3632271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Granzyme B in atherosclerosis and transplant vascular disease: association with cell death and atherosclerotic disease severity.
    Choy JC; McDonald PC; Suarez AC; Hung VH; Wilson JE; McManus BM; Granville DJ
    Mod Pathol; 2003 May; 16(5):460-70. PubMed ID: 12748253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upregulation of the ligand-RAGE pathway via the angiotensin II type I receptor is essential in the pathogenesis of diabetic atherosclerosis.
    Ihara Y; Egashira K; Nakano K; Ohtani K; Kubo M; Koga J; Iwai M; Horiuchi M; Gang Z; Yamagishi S; Sunagawa K
    J Mol Cell Cardiol; 2007 Oct; 43(4):455-64. PubMed ID: 17761193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring of atherosclerosis.
    Zhdanov VS; Sternby NH
    Int J Cardiol; 2004 May; 95(1):39-42. PubMed ID: 15159036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residual strain in human atherosclerotic coronary arteries and age related geometrical changes.
    Valenta J; Svoboda J; Valerianova D; Vitek K
    Biomed Mater Eng; 1999; 9(5-6):311-7. PubMed ID: 10822486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiotensin II receptor mRNA expression and vasoconstriction in human coronary arteries: effects of heart failure and age.
    Wackenfors A; Pantev E; Emilson M; Edvinsson L; Malmsjö M
    Basic Clin Pharmacol Toxicol; 2004 Dec; 95(6):266-72. PubMed ID: 15569271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative morphology of the hepatic and coronary artery walls. Part I. Differences in the distribution and intensity of non-atherosclerotic intimal thickening and atherosclerosis.
    Kruś S; Turjman MW; Fiejka E
    Med Sci Monit; 2000; 6(1):19-23. PubMed ID: 11208278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular immunostaining of angiotensin-converting enzyme in human coronary atherosclerotic plaques.
    Ribichini F; Pugno F; Ferrero V; Bussolati G; Feola M; Russo P; Di Mario C; Colombo A; Vassanelli C
    J Am Coll Cardiol; 2006 Mar; 47(6):1143-9. PubMed ID: 16545643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gender gap, inflammation and acute coronary disease: are women resistant to atheroma growth? Observations at autopsy.
    Frink RJ
    J Invasive Cardiol; 2009 Jun; 21(6):270-7. PubMed ID: 19494403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biology of the smooth muscle cells in human atherosclerosis.
    Lavezzi AM; Ottaviani G; Matturri L
    APMIS; 2005 Feb; 113(2):112-21. PubMed ID: 15723685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.