BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 12111144)

  • 1. Dietary-fiber-degrading enzymes from a human intestinal Clostridium and their application to oligosaccharide production from nonstarchy polysaccharides using immobilized cells.
    Nakajima N; Ishihara K; Matsuura Y
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):182-9. PubMed ID: 12111144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of konjac glucomannan degrading enzyme from anaerobic human intestinal bacterium, Clostridium butyricum-Clostridium beijerinckii group.
    Nakajima N; Matsuura Y
    Biosci Biotechnol Biochem; 1997 Oct; 61(10):1739-42. PubMed ID: 9362121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of pectic substances by two pectate lyases from a human intestinal bacterium, Clostridium butyricum-beijerinckii group.
    Nakajima N; Ishihara K; Tanabe M; Matsubara K; Matsuura Y
    J Biosci Bioeng; 1999; 88(3):331-3. PubMed ID: 16232622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic production and characterization of konjac glucomannan oligosaccharides.
    Albrecht S; van Muiswinkel GC; Xu J; Schols HA; Voragen AG; Gruppen H
    J Agric Food Chem; 2011 Dec; 59(23):12658-66. PubMed ID: 22017574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introducing capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) for the characterization of konjac glucomannan oligosaccharides and their in vitro fermentation behavior.
    Albrecht S; van Muiswinkel GC; Schols HA; Voragen AG; Gruppen H
    J Agric Food Chem; 2009 May; 57(9):3867-76. PubMed ID: 19296676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of konjac glucomannan digestibility and fermentability with other dietary fibers in vitro.
    Chiu YT; Stewart M
    J Med Food; 2012 Feb; 15(2):120-5. PubMed ID: 22149628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of konjac glucomannan by enzymes in human feces and formation of short-chain fatty acids by intestinal anaerobic bacteria.
    Matsuura Y
    J Nutr Sci Vitaminol (Tokyo); 1998 Jun; 44(3):423-36. PubMed ID: 9742462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficacy of cellulase and mannanase hydrolysates of konjac glucomannan to promote the growth of lactic acid bacteria.
    Al-Ghazzewi FH; Tester RF
    J Sci Food Agric; 2012 Aug; 92(11):2394-6. PubMed ID: 22495737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the relative available energy of several dietary fiber preparations using breath hydrogen evolution in healthy humans.
    Oku T; Nakamura S
    J Nutr Sci Vitaminol (Tokyo); 2014; 60(4):246-54. PubMed ID: 25297613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cost-effective endo-mannanase from Bacillus sp. CFR1601 and its application in generation of oligosaccharides from guar gum and as detergent additive.
    Srivastava PK; Kapoor M
    Prep Biochem Biotechnol; 2014; 44(4):392-417. PubMed ID: 24320239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides.
    Moon JS; Shin SY; Choi HS; Joo W; Cho SK; Li L; Kang JH; Kim TJ; Han NS
    Carbohydr Polym; 2015 Oct; 131():50-6. PubMed ID: 26256159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of galactomannan by a Clostridium butyricum strain.
    Dong XZ; Schyns PJ; Stams AJ
    Antonie Van Leeuwenhoek; 1991 Aug; 60(2):109-14. PubMed ID: 1666501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers.
    Kaur A; Rose DJ; Rumpagaporn P; Patterson JA; Hamaker BR
    J Food Sci; 2011; 76(5):H137-42. PubMed ID: 22417432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of beta-mannanase and beta-mannosidase from Aspergillus awamori K4 and their properties.
    Kurakake M; Komaki T
    Curr Microbiol; 2001 Jun; 42(6):377-80. PubMed ID: 11381326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compositional analysis of the oligosaccharide units of xyloglucans from suspension-cultured poplar cells.
    Hayashi T; Takeda T
    Biosci Biotechnol Biochem; 1994 Sep; 58(9):1707-8. PubMed ID: 7765486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel thermostable GH5_7 β-mannanase from Bacillus pumilus GBSW19 and its application in manno-oligosaccharides (MOS) production.
    Zang H; Xie S; Wu H; Wang W; Shao X; Wu L; Rajer FU; Gao X
    Enzyme Microb Technol; 2015 Oct; 78():1-9. PubMed ID: 26215338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Affinity purification of cellulose-binding enzymes of Clostridium stercorarium.
    Bronnenmeier K; Adelsberger H; Lottspeich F; Staudenbauer WL
    Bioseparation; 1996 Feb; 6(1):41-5. PubMed ID: 8987526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergy between ruminal fibrolytic enzymes and enzymes from Trichoderma longibrachiatum.
    Morgavi DP; Beauchemin KA; Nsereko VL; Rode LM; Iwaasa AD; Yang WZ; McAllister TA; Wang Y
    J Dairy Sci; 2000 Jun; 83(6):1310-21. PubMed ID: 10877396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and functional characterization of endo-beta-mannanase MAN5 and its application in oligosaccharide production from konjac flour.
    Zhang M; Chen XL; Zhang ZH; Sun CY; Chen LL; He HL; Zhou BC; Zhang YZ
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):865-73. PubMed ID: 19263048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digestibility of new dietary fibre materials, resistant glucan and hydrogenated resistant glucan in rats and humans, and the physical effects in rats.
    Oku T; Tanabe K; Morita S; Hamaguchi N; Shimura F; Nakamura S
    Br J Nutr; 2015 Nov; 114(10):1550-9. PubMed ID: 26472475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.