BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 12111164)

  • 1. Alkanotrophic Rhodococcus ruber as a biosurfactant producer.
    Philp JC; Kuyukina MS; Ivshina IB; Dunbar SA; Christofi N; Lang S; Wray V
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):318-24. PubMed ID: 12111164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Production of surfactants by Rhodococcus erythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates].
    Pirog TP; Shevchuk TA; Voloshina IN; Karpenko EV
    Prikl Biokhim Mikrobiol; 2004; 40(5):544-50. PubMed ID: 15553786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants.
    Peng F; Liu Z; Wang L; Shao Z
    J Appl Microbiol; 2007 Jun; 102(6):1603-11. PubMed ID: 17578426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain.
    Tuleva B; Christova N; Cohen R; Stoev G; Stoineva I
    J Appl Microbiol; 2008 Jun; 104(6):1703-10. PubMed ID: 18194255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature.
    Luong TM; Ponamoreva ON; Nechaeva IA; Petrikov KV; Delegan YA; Surin AK; Linklater D; Filonov AE
    World J Microbiol Biotechnol; 2018 Jan; 34(2):20. PubMed ID: 29302805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosurfactant production by Rhodococcus erythropolis grown on glycerol as sole carbon source.
    Ciapina EM; Melo WC; Santa Anna LM; Santos AS; Freire DM; Pereira N
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):880-6. PubMed ID: 18563662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosurfactant production by Rhodococcus erythropolis grown on glycerol as sole carbon source.
    Ciapina EM; Melo WC; Santa Anna LM; Santos AS; Freire DM; Pereira Júnior N
    Appl Biochem Biotechnol; 2006; 129-132():880-6. PubMed ID: 16915696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Kinetics of the degradation of aliphatic hydrocarbons by the bacteria Rhodococcus ruber and Rhodococcus erythropolis].
    Zhukov DV; Murygina VP; Kaliuzhnyĭ SV
    Prikl Biokhim Mikrobiol; 2007; 43(6):657-63. PubMed ID: 18173107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Particularities of alkane oxidation in Rhodococcus erythropolis EK-1 strain--producer of surface-active substances].
    Pyroh TP; Shevchuk TA; Klymenko IuO
    Mikrobiol Z; 2009; 71(4):9-14. PubMed ID: 19938610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of selected (bio-)surfactants by bacterial cultures monitored by calorimetric methods.
    Frank N; Lissner A; Winkelmann M; Hüttl R; Mertens FO; Kaschabek SR; Schlömann M
    Biodegradation; 2010 Apr; 21(2):179-91. PubMed ID: 19714474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Surfactant production by the Rhodococcus erythropolis sH-5 bacterium grown on various carbon sources].
    Gogotov IN; Khodakov RS
    Prikl Biokhim Mikrobiol; 2008; 44(2):207-12. PubMed ID: 18669264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [C2 metabolism and intensification of the synthesis of surface-active substances in Rhodococcus erythropolis EK-1 grown on ethanol].
    Pirog TP; Korzh IuV; Shevchuk TA; Tarasenko DA
    Mikrobiologiia; 2008; 77(6):749-57. PubMed ID: 19137713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Peculiarities of surface-active trehalose mycolates synthesis of Rhodococcus erythropolis EK-1].
    Pyroh TP; Shevchuk TA; Klymenko IuO
    Mikrobiol Z; 2010; 72(2):10-5. PubMed ID: 20455436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haloalkane hydrolysis by Rhodococcus erythropolis cells: comparison of conventional aqueous phase dehalogenation and nonconventional gas phase dehalogenation.
    Erable B; Goubet I; Lamare S; Legoy MD; Maugard T
    Biotechnol Bioeng; 2004 Apr; 86(1):47-54. PubMed ID: 15007840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Intensification of surfactant synthesis in Rhodococcus erythropolis EK-1 cultivated on hexadecane].
    Pirog TP; Shevchuk TA; Klimenko IuA
    Prikl Biokhim Mikrobiol; 2010; 46(6):651-8. PubMed ID: 21261075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Scaling of the process of biosynthesis of surfactants by Rhodococcus erythropolis EK-1 on hexadecane].
    Pirog TP; Ignatenko SV
    Prikl Biokhim Mikrobiol; 2011; 47(4):436-42. PubMed ID: 21950118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and structural characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP.
    Niescher S; Wray V; Lang S; Kaschabek SR; Schlömann M
    Appl Microbiol Biotechnol; 2006 May; 70(5):605-11. PubMed ID: 16133336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-active lipids in rhodococci.
    Lang S; Philp JC
    Antonie Van Leeuwenhoek; 1998; 74(1-3):59-70. PubMed ID: 10068789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosurfactant-enhanced immobilization of hydrocarbon-oxidizing Rhodococcus ruber on sawdust.
    Ivshina IB; Kuyukina MS; Krivoruchko AV; Plekhov OA; Naimark OB; Podorozhko EA; Lozinsky VI
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5315-27. PubMed ID: 23584244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase.
    Rapp P; Gabriel-Jürgens LHE
    Microbiology (Reading); 2003 Oct; 149(Pt 10):2879-2890. PubMed ID: 14523120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.