BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 12111228)

  • 1. Seasonal responses of photosynthetic electron transport in Scots pine (Pinus sylvestris L.) studied by thermoluminescence.
    Ivanov AG; Sane PV; Zeinalov Y; Simidjiev I; Huner NP; Oquist G
    Planta; 2002 Jul; 215(3):457-65. PubMed ID: 12111228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitation energy partitioning and quenching during cold acclimation in Scots pine.
    Sveshnikov D; Ensminger I; Ivanov AG; Campbell D; Lloyd J; Funk C; Hüner NP; Oquist G
    Tree Physiol; 2006 Mar; 26(3):325-36. PubMed ID: 16356904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of energy partitioning and alternative electron transport pathways during cold acclimation of lodgepole pine is oxygen dependent.
    Savitch LV; Ivanov AG; Krol M; Sprott DP; Oquist G; Huner NP
    Plant Cell Physiol; 2010 Sep; 51(9):1555-70. PubMed ID: 20630988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosynthetic electron transport adjustments in overwintering Scots pine (Pinus sylvestris L.).
    Ivanov AG; Sane PV; Zeinalov Y; Malmberg G; Gardeström P; Huner NP; Oquist G
    Planta; 2001 Aug; 213(4):575-85. PubMed ID: 11556790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine.
    Ivanov AG; Krol M; Sveshnikov D; Malmberg G; Gardeström P; Hurry V; Oquist G; Huner NP
    Planta; 2006 May; 223(6):1165-77. PubMed ID: 16333639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal changes in abundance and phosphorylation status of photosynthetic proteins in eastern white pine and balsam fir.
    Verhoeven A; Osmolak A; Morales P; Crow J
    Tree Physiol; 2009 Mar; 29(3):361-74. PubMed ID: 19203960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the redox potential of primary and secondary electron-accepting quinones in photosystem II confer increased resistance to photoinhibition in low-temperature-acclimated Arabidopsis.
    Sane PV; Ivanov AG; Hurry V; Huner NP; Oquist G
    Plant Physiol; 2003 Aug; 132(4):2144-51. PubMed ID: 12913169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal acclimation of photosystem II in Pinus sylvestris. II. Using the rate constants of sustained thermal energy dissipation and photochemistry to study the effect of the light environment.
    Porcar-Castell A; Juurola E; Ensminger I; Berninger F; Hari P; Nikinmaa E
    Tree Physiol; 2008 Oct; 28(10):1483-91. PubMed ID: 18708330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal acclimation of photosystem II in Pinus sylvestris. I. Estimating the rate constants of sustained thermal energy dissipation and photochemistry.
    Porcar-Castell A; Juurola E; Nikinmaa E; Berninger F; Ensminger I; Hari P
    Tree Physiol; 2008 Oct; 28(10):1475-82. PubMed ID: 18708329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal response of photosynthetic electron transport and energy dissipation in the eighth year of exposure to elevated atmospheric CO2 (FACE) in Pinus taeda (loblolly pine).
    Logan BA; Combs A; Myers K; Kent R; Stanley L; Tissue DT
    Tree Physiol; 2009 Jun; 29(6):789-97. PubMed ID: 19364706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of tobacco transformants to assess the role of chloroplastic NAD(P)H dehydrogenase in photoprotection of photosystems I and II.
    Barth C; Krause GH
    Planta; 2002 Dec; 216(2):273-9. PubMed ID: 12447541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity.
    Lazár D
    J Theor Biol; 2003 Feb; 220(4):469-503. PubMed ID: 12623282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between photochemical efficiency of photosystem II and the photochemical reflectance index of mango tree: merging data from different illuminations, seasons and leaf colors.
    Weng JH; Jhaung LH; Lin RJ; Chen HY
    Tree Physiol; 2010 Apr; 30(4):469-78. PubMed ID: 20233840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acclimation to temperature and irradiance modulates PSII charge recombination.
    Ivanov AG; Sane PV; Krol M; Gray GR; Balseris A; Savitch LV; Oquist G; Hüner NP
    FEBS Lett; 2006 May; 580(11):2797-802. PubMed ID: 16674953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiative and non-radiative charge recombination pathways in Photosystem II studied by thermoluminescence and chlorophyll fluorescence in the cyanobacterium Synechocystis 6803.
    Cser K; Vass I
    Biochim Biophys Acta; 2007 Mar; 1767(3):233-43. PubMed ID: 17349965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations in the CD-loop region of the D2 protein in Synechocystis sp. PCC 6803 modify charge recombination pathways in photosystem II in vivo.
    Vavilin DV; Vermaas WF
    Biochemistry; 2000 Dec; 39(48):14831-8. PubMed ID: 11101299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosystem II proteins PsbL and PsbJ regulate electron flow to the plastoquinone pool.
    Ohad I; Dal Bosco C; Herrmann RG; Meurer J
    Biochemistry; 2004 Mar; 43(8):2297-308. PubMed ID: 14979726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the PsbU subunit in the light sensitivity of PSII in the cyanobacterium Synechococcus 7942.
    Abasova L; Deák Z; Schwarz R; Vass I
    J Photochem Photobiol B; 2011 Nov; 105(2):149-56. PubMed ID: 21944715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron flow to photosystem I from stromal reductants in vivo: the size of the pool of stromal reductants controls the rate of electron donation to both rapidly and slowly reducing photosystem I units.
    Bukhov N; Egorova E; Carpentier R
    Planta; 2002 Sep; 215(5):812-20. PubMed ID: 12244447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of chl fluorescence in intact leaves of tobacco plants.
    Miyake C; Shinzaki Y; Miyata M; Tomizawa K
    Plant Cell Physiol; 2004 Oct; 45(10):1426-33. PubMed ID: 15564526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.