These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 12111534)

  • 1. Clock mechanisms in zebrafish.
    Cahill GM
    Cell Tissue Res; 2002 Jul; 309(1):27-34. PubMed ID: 12111534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators.
    Whitmore D; Foulkes NS; Strähle U; Sassone-Corsi P
    Nat Neurosci; 1998 Dec; 1(8):701-7. PubMed ID: 10196586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zebrafish arylalkylamine-N-acetyltransferase genes - targets for regulation of the circadian clock.
    Appelbaum L; Vallone D; Anzulovich A; Ziv L; Tom M; Foulkes NS; Gothilf Y
    J Mol Endocrinol; 2006 Apr; 36(2):337-47. PubMed ID: 16595704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. It's time to swim! Zebrafish and the circadian clock.
    Vatine G; Vallone D; Gothilf Y; Foulkes NS
    FEBS Lett; 2011 May; 585(10):1485-94. PubMed ID: 21486566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common pathways in circadian and cell cycle clocks: light-dependent activation of Fos/AP-1 in zebrafish controls CRY-1a and WEE-1.
    Hirayama J; Cardone L; Doi M; Sassone-Corsi P
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10194-9. PubMed ID: 16000406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular machinery of the circadian clock in mammals.
    Okamura H; Yamaguchi S; Yagita K
    Cell Tissue Res; 2002 Jul; 309(1):47-56. PubMed ID: 12111536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional regulation of arylalkylamine-N-acetyltransferase-2 gene in the pineal gland of the gilthead seabream.
    Zilberman-Peled B; Appelbaum L; Vallone D; Foulkes NS; Anava S; Anzulovich A; Coon SL; Klein DC; Falcón J; Ron B; Gothilf Y
    J Neuroendocrinol; 2007 Jan; 19(1):46-53. PubMed ID: 17184485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zebrafish temperature selection and synchronization of locomotor activity circadian rhythm to ahemeral cycles of light and temperature.
    López-Olmeda JF; Sánchez-Vázquez FJ
    Chronobiol Int; 2009 Feb; 26(2):200-18. PubMed ID: 19212837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of circadian rhythms in zebrafish.
    Hirayama J; Kaneko M; Cardone L; Cahill G; Sassone-Corsi P
    Methods Enzymol; 2005; 393():186-204. PubMed ID: 15817288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and phenogenetics of a novel circadian rhythm mutant in zebrafish.
    DeBruyne J; Hurd MW; Gutiérrez L; Kaneko M; Tan Y; Wells DE; Cahill GM
    J Neurogenet; 2004; 18(2):403-28. PubMed ID: 15763996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploratory investigation of the effect of melatonin and caloric restriction on the temporal expression of murine hypothalamic transcripts.
    Resuehr D; Sikes HE; Olcese J
    J Neuroendocrinol; 2006 Apr; 18(4):279-89. PubMed ID: 16503923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the communication pathways between the central pacemaker and peripheral oscillators.
    Cermakian N; Pando MP; Doi M; Cardone L; Yujnovsky I; Morse D; Sassone-Corsi P
    Novartis Found Symp; 2003; 253():126-36; discussion 136-9. PubMed ID: 14712918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modeling of synchronization process of the circadian timing system of mammals.
    Cardoso FR; de Oliveira Cruz FA; Silva D; Cortez CM
    Biol Cybern; 2009 May; 100(5):385-93. PubMed ID: 19367410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symphony of rhythms in the Xenopus laevis retina.
    Anderson FE; Green CB
    Microsc Res Tech; 2000 Sep; 50(5):360-72. PubMed ID: 10941172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain?
    Guilding C; Piggins HD
    Eur J Neurosci; 2007 Jun; 25(11):3195-216. PubMed ID: 17552989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peripheral circadian oscillators: interesting mechanisms and powerful tools.
    Cuninkova L; Brown SA
    Ann N Y Acad Sci; 2008; 1129():358-70. PubMed ID: 18591495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical silencing of PDF neurons advances the phase of non-PDF clock neurons in Drosophila.
    Wu Y; Cao G; Nitabach MN
    J Biol Rhythms; 2008 Apr; 23(2):117-28. PubMed ID: 18375861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties, entrainment, and physiological functions of mammalian peripheral oscillators.
    Stratmann M; Schibler U
    J Biol Rhythms; 2006 Dec; 21(6):494-506. PubMed ID: 17107939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoration of circadian rhythmicity in circadian clock-deficient mice in constant light.
    Abraham D; Dallmann R; Steinlechner S; Albrecht U; Eichele G; Oster H
    J Biol Rhythms; 2006 Jun; 21(3):169-76. PubMed ID: 16731656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melatonin in the multi-oscillatory mammalian circadian world.
    Pévet P; Agez L; Bothorel B; Saboureau M; Gauer F; Laurent V; Masson-Pévet M
    Chronobiol Int; 2006; 23(1-2):39-51. PubMed ID: 16687278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.