These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 12111745)
1. Independently expressed N-terminal pro-domain of aqualysin I precursor complements the folding of its mature domain to active form in Escherichia coli. Kim JY; Choi YL; Cho YS; Kim CH; Lee YC J Basic Microbiol; 2002; 42(3):181-9. PubMed ID: 12111745 [TBL] [Abstract][Full Text] [Related]
2. Requirement for the COOH-terminal pro-sequence in the translocation of aqualysin I across the cytoplasmic membrane in Escherichia coli. Kim DW; Matsuzawa H Biochem Biophys Res Commun; 2000 Oct; 277(1):216-20. PubMed ID: 11027666 [TBL] [Abstract][Full Text] [Related]
3. Involvement of NH2-terminal pro-sequence in the production of active aqualysin I (a thermophilic serine protease) in Escherichia coli. Lee YC; Miyata Y; Terada I; Ohta T; Matsuzawa H Agric Biol Chem; 1991 Dec; 55(12):3027-32. PubMed ID: 1368764 [TBL] [Abstract][Full Text] [Related]
4. A carboxy-terminal pro-sequence of aqualysin I prevents proper folding of the protease domain on its secretion by Saccharomyces cerevisiae. Kim DW; Lin SJ; Morita S; Terada I; Matsuzawa H Biochem Biophys Res Commun; 1997 Feb; 231(3):535-9. PubMed ID: 9070839 [TBL] [Abstract][Full Text] [Related]
5. Unique precursor structure of an extracellular protease, aqualysin I, with NH2- and COOH-terminal pro-sequences and its processing in Escherichia coli. Terada I; Kwon ST; Miyata Y; Matsuzawa H; Ohta T J Biol Chem; 1990 Apr; 265(12):6576-81. PubMed ID: 2182621 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of alpha-lytic protease by pro region C-terminal steric occlusion of the active site. Sohl JL; Shiau AK; Rader SD; Wilk BJ; Agard DA Biochemistry; 1997 Apr; 36(13):3894-902. PubMed ID: 9092819 [TBL] [Abstract][Full Text] [Related]
7. Interdependent folding of the N- and C-terminal domains defines the cooperative folding of alpha-lytic protease. Cunningham EL; Agard DA Biochemistry; 2003 Nov; 42(45):13212-9. PubMed ID: 14609332 [TBL] [Abstract][Full Text] [Related]
8. A 38 kDa precursor protein of aqualysin I (a thermophilic subtilisin-type protease) with a C-terminal extended sequence: its purification and in vitro processing. Kurosaka K; Ohta T; Matsuzawa H Mol Microbiol; 1996 Apr; 20(2):385-9. PubMed ID: 8733236 [TBL] [Abstract][Full Text] [Related]
9. Pro region C-terminus:protease active site interactions are critical in catalyzing the folding of alpha-lytic protease. Peters RJ; Shiau AK; Sohl JL; Anderson DE; Tang G; Silen JL; Agard DA Biochemistry; 1998 Sep; 37(35):12058-67. PubMed ID: 9724517 [TBL] [Abstract][Full Text] [Related]
10. Improvement of extracellular production of a thermophilic subtilase expressed in Escherichia coli by random mutagenesis of its N-terminal propeptide. Fang N; Zhong CQ; Liang X; Tang XF; Tang B Appl Microbiol Biotechnol; 2010 Feb; 85(5):1473-81. PubMed ID: 19697018 [TBL] [Abstract][Full Text] [Related]
11. Role of the COOH-terminal pro-sequence of aqualysin I (a heat-stable serine protease) in its extracellular secretion by Thermus thermophilus. Kim DW; Lee YC; Matsuzawa H FEMS Microbiol Lett; 1997 Dec; 157(1):39-45. PubMed ID: 9418238 [TBL] [Abstract][Full Text] [Related]
12. A non-covalent NH2-terminal pro-region aids the production of active aqualysin I (a thermophilic protease) without the COOH-terminal pro-sequence in Escherichia coli. Lee YC; Ohta T; Matsuzawa H FEMS Microbiol Lett; 1992 Apr; 71(1):73-7. PubMed ID: 1624114 [TBL] [Abstract][Full Text] [Related]
13. The alpha-lytic protease pro-region does not require a physical linkage to activate the protease domain in vivo. Silen JL; Agard DA Nature; 1989 Oct; 341(6241):462-4. PubMed ID: 2507926 [TBL] [Abstract][Full Text] [Related]
14. Pro-sequence and Ca2+-binding: implications for folding and maturation of Ntn-hydrolase penicillin amidase from E. coli. Ignatova Z; Wischnewski F; Notbohm H; Kasche V J Mol Biol; 2005 May; 348(4):999-1014. PubMed ID: 15843029 [TBL] [Abstract][Full Text] [Related]
15. Linkers for improved cleavage of fusion proteins with an engineered alpha-lytic protease. Lien S; Milner SJ; Graham LD; Wallace JC; Francis GL Biotechnol Bioeng; 2001 Aug; 74(4):335-43. PubMed ID: 11410858 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the glutamyl endopeptidase from Staphylococcus aureus expressed in Escherichia coli. Nemoto TK; Ohara-Nemoto Y; Ono T; Kobayakawa T; Shimoyama Y; Kimura S; Takagi T FEBS J; 2008 Feb; 275(3):573-87. PubMed ID: 18199287 [TBL] [Abstract][Full Text] [Related]
17. The primary structure of the N-terminal region of mature alkaline phosphatase is critical for secretion and function of the enzyme. Kononova SV; Zolov SN; Krupyanko VI; Nesmeyanova MA Biochemistry (Mosc); 2000 Sep; 65(9):1075-81. PubMed ID: 11042501 [TBL] [Abstract][Full Text] [Related]
18. Construction of an expression system for aqualysin I in Escherichia coli that gives a markedly improved yield of the enzyme protein. Sakaguchi M; Niimiya K; Takezawa M; Toki T; Sugahara Y; Kawakita M Biosci Biotechnol Biochem; 2008 Aug; 72(8):2012-8. PubMed ID: 18685213 [TBL] [Abstract][Full Text] [Related]
19. The production of recombinant APRP, an alkaline protease derived from Bacillus pumilus TYO-67, by in vitro refolding of pro-enzyme fixed on a solid surface. Takahashi M; Sekine T; Kuba N; Nakamori S; Yasuda M; Takagi H J Biochem; 2004 Oct; 136(4):549-56. PubMed ID: 15625326 [TBL] [Abstract][Full Text] [Related]
20. Nucleotide and deduced amino acid sequences of a subtilisin-like serine protease from a deep-sea bacterium, Alkalimonas collagenimarina AC40(T). Kurata A; Uchimura K; Shimamura S; Kobayashi T; Horikoshi K Appl Microbiol Biotechnol; 2007 Nov; 77(2):311-9. PubMed ID: 17786425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]