These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 12111971)
21. Expression of a parasitism-specific protein in lepidopteran hosts of Chelonus sp. Soldevila AI; Jones D Arch Insect Biochem Physiol; 1993; 24(3):149-69. PubMed ID: 8257790 [TBL] [Abstract][Full Text] [Related]
22. Host nutrition determines blood nutrient composition and mediates parasite developmental success: Manduca sexta L. parasitized by Cotesia congregata (Say). Thompson SN; Redak RA; Wang LW J Exp Biol; 2005 Feb; 208(Pt 4):625-35. PubMed ID: 15695755 [TBL] [Abstract][Full Text] [Related]
23. Resource depletion in Aedes aegypti mosquitoes infected by the microsporidia Vavraia culicis. Rivero A; Agnew P; Bedhomme S; Sidobre C; Michalakis Y Parasitology; 2007 Sep; 134(Pt 10):1355-62. PubMed ID: 17634157 [TBL] [Abstract][Full Text] [Related]
24. Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth, Plutella xylostella. Bae S; Kim Y Comp Biochem Physiol A Mol Integr Physiol; 2004 May; 138(1):39-44. PubMed ID: 15165569 [TBL] [Abstract][Full Text] [Related]
25. Carbohydrate metabolism during starvation in the silkworm Bombyx mori. Satake S; Kawabe Y; Mizoguchi A Arch Insect Biochem Physiol; 2000 Jun; 44(2):90-8. PubMed ID: 10861869 [TBL] [Abstract][Full Text] [Related]
26. Effects of parasitism by the braconid wasp Cotesia congregata on host hemolymph proteins of the tobacco hornworm, Manduca sexta. Beckage NE; Kanost MR Insect Biochem Mol Biol; 1993 Jul; 23(5):643-53. PubMed ID: 8353522 [TBL] [Abstract][Full Text] [Related]
27. Physiological suppression of the larval parasitoid Glyptapanteles pallipes by the polyembryonic parasitoid Copidosoma floridanum. Uka D; Hiraoka T; Iwabuchi K J Insect Physiol; 2006; 52(11-12):1137-42. PubMed ID: 17070833 [TBL] [Abstract][Full Text] [Related]
28. Cotesia kariyai larvae need an anchor to emerge from the host Pseudaletia separata. Nakamatsu Y; Tanaka T; Harvey JA Arch Insect Biochem Physiol; 2007 Sep; 66(1):1-8. PubMed ID: 17694565 [TBL] [Abstract][Full Text] [Related]
29. Host specificity of microsporidia pathogenic to the gypsy moth, Lymantria dispar (L.): field studies in Slovakia. Solter LF; Pilarska DK; McManus ML; Zúbrik M; Patocka J; Huang WF; Novotný J J Invertebr Pathol; 2010 Sep; 105(1):1-10. PubMed ID: 20435042 [TBL] [Abstract][Full Text] [Related]
30. Heavy metal concentrations of the endoparasitoid Glyptapanteles liparidis Bouche (Hymenoptera) in contaminated Lymantria dispar L. larvae (Lepidoptera). Bischof C Bull Environ Contam Toxicol; 1995 Oct; 55(4):533-8. PubMed ID: 8555677 [No Abstract] [Full Text] [Related]
31. In vitro rearing of Toxoneuron nigriceps (Hymenoptera: Braconidae), a larval endoparasitoid of Heliothis virescens (Lepidoptera: Noctuidae) from early second instar to third instar larvae. Kuriachan I; Consoli FL; Vinson SB J Insect Physiol; 2006 Aug; 52(8):881-7. PubMed ID: 16828792 [TBL] [Abstract][Full Text] [Related]
32. Content of saccharides and activity of alpha-glycosidases in Galleria mellonella larvae infected with entomopathogenic nematodes Heterorhabditis zealandica. Zółtowska K Wiad Parazytol; 2004; 50(3):495-501. PubMed ID: 16865959 [TBL] [Abstract][Full Text] [Related]
33. The impact of mixed infection of three species of microsporidia isolated from the gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae). Solter LF; Siegel JP; Pilarska DK; Higgs MC J Invertebr Pathol; 2002 Oct; 81(2):103-13. PubMed ID: 12445794 [TBL] [Abstract][Full Text] [Related]
34. Altered hexamerin regulation in prepupal Trichoplusia ni pseudoparasitized by Chelonus sp. near curvimaculatus. Jones D; Turner H; Chhokar V Arch Insect Biochem Physiol; 1996; 32(3-4):537-48. PubMed ID: 8756308 [TBL] [Abstract][Full Text] [Related]
35. The convergent lady beetle, Hippodamia convergens Guérin-Méneville and its endoparasitoid Dinocampus coccinellae (Schrank): the effect of a microsporidium on parasitoid development and host preference. Saito T; Bjørnson S J Invertebr Pathol; 2013 May; 113(1):18-25. PubMed ID: 23333422 [TBL] [Abstract][Full Text] [Related]
36. Physiological host specificity of microsporidia as an indicator of ecological host specificity. Solter LF; Maddox JV J Invertebr Pathol; 1998 May; 71(3):207-16. PubMed ID: 9538025 [TBL] [Abstract][Full Text] [Related]
37. Factors affecting growth in the koinobiont endoparasitoid Venturia canescens in the flour moth Ephestia kuehniella. Rahman MM; Roberts HL; Schmidt O J Insect Physiol; 2007 May; 53(5):463-7. PubMed ID: 17403524 [TBL] [Abstract][Full Text] [Related]
38. Survival and differential development of Entomophaga maimaiga and Entomophaga aulicae (Zygomycetes: Entomophthorales) in Lymantria dispar hemolymph. Lopez Lastra CC; Gibson DM; Hajek AE J Invertebr Pathol; 2001 Nov; 78(4):201-9. PubMed ID: 12009800 [TBL] [Abstract][Full Text] [Related]
39. Functional analysis of a fatty acid binding protein produced by Aphidius ervi teratocytes. Caccia S; Grimaldi A; Casartelli M; Falabella P; de Eguileor M; Pennacchio F; Giordana B J Insect Physiol; 2012 May; 58(5):621-7. PubMed ID: 22226822 [TBL] [Abstract][Full Text] [Related]
40. Influence of the parasitoid Chelonus inanitus and its polydnavirus on host nutritional physiology and implications for parasitoid development. Kaeslin M; Pfister-Wilhelm R; Lanzrein B J Insect Physiol; 2005 Dec; 51(12):1330-9. PubMed ID: 16203013 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]