These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 12112236)
1. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria. Overkamp KM; Bakker BM; Steensma HY; van Dijken JP; Pronk JT Yeast; 2002 Jul; 19(10):813-24. PubMed ID: 12112236 [TBL] [Abstract][Full Text] [Related]
2. Reoxidation of cytosolic NADPH in Kluyveromyces lactis. Tarrío N; Becerra M; Cerdán ME; González Siso MI FEMS Yeast Res; 2006 May; 6(3):371-80. PubMed ID: 16630277 [TBL] [Abstract][Full Text] [Related]
3. The role of glutathione reductase in the interplay between oxidative stress response and turnover of cytosolic NADPH in Kluyveromyces lactis. Tarrío N; García-Leiro A; Cerdán ME; González-Siso MI FEMS Yeast Res; 2008 Jun; 8(4):597-606. PubMed ID: 18318708 [TBL] [Abstract][Full Text] [Related]
4. Reoxidation of the NADPH produced by the pentose phosphate pathway is necessary for the utilization of glucose by Kluyveromyces lactis rag2 mutants. González Siso MI; Freire Picos MA; Cerdán ME FEBS Lett; 1996 May; 387(1):7-10. PubMed ID: 8654569 [TBL] [Abstract][Full Text] [Related]
5. Regulation of pyruvate metabolism in chemostat cultures of Kluyveromyces lactis CBS 2359. Zeeman AM; Kuyper M; Pronk JT; van Dijken JP; Steensma HY Yeast; 2000 May; 16(7):611-20. PubMed ID: 10806423 [TBL] [Abstract][Full Text] [Related]
6. KlADH3, a gene encoding a mitochondrial alcohol dehydrogenase, affects respiratory metabolism and cytochrome content in Kluyveromyces lactis. Saliola M; De Maria I; Lodi T; Fiori A; Falcone C FEMS Yeast Res; 2006 Dec; 6(8):1184-92. PubMed ID: 17156015 [TBL] [Abstract][Full Text] [Related]
7. Identification of the first fungal NADP-GAPDH from Kluyveromyces lactis. Verho R; Richard P; Jonson PH; Sundqvist L; Londesborough J; Penttilä M Biochemistry; 2002 Nov; 41(46):13833-8. PubMed ID: 12427047 [TBL] [Abstract][Full Text] [Related]
8. Glucose metabolism and ethanol production in adh multiple and null mutants of Kluyveromyces lactis. Saliola M; Bellardi S; Marta I; Falcone C Yeast; 1994 Sep; 10(9):1133-40. PubMed ID: 7754703 [TBL] [Abstract][Full Text] [Related]
9. The mitochondrial external NADPH dehydrogenase modulates the leaf NADPH/NADP+ ratio in transgenic Nicotiana sylvestris. Liu YJ; Norberg FE; Szilágyi A; De Paepe R; Akerlund HE; Rasmusson AG Plant Cell Physiol; 2008 Feb; 49(2):251-63. PubMed ID: 18182402 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide analysis of Kluyveromyces lactis in wild-type and rag2 mutant strains. Becerra M; Tarrío N; González-Siso MI; Cerdán ME Genome; 2004 Oct; 47(5):970-8. PubMed ID: 15499411 [TBL] [Abstract][Full Text] [Related]
11. Mediator-assisted simultaneous probing of cytosolic and mitochondrial redox activity in living cells. Heiskanen A; Spégel C; Kostesha N; Lindahl S; Ruzgas T; Emnéus J Anal Biochem; 2009 Jan; 384(1):11-9. PubMed ID: 18812160 [TBL] [Abstract][Full Text] [Related]
12. Glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains. Heux S; Cadiere A; Dequin S FEMS Yeast Res; 2008 Mar; 8(2):217-24. PubMed ID: 18036177 [TBL] [Abstract][Full Text] [Related]
13. Isolation and nucleotide sequence of a gene encoding tRNA nucleotidyltransferase from Kluyveromyces lactis. Deng XY; Hanic-Joyce PJ; Joyce PB Yeast; 2000 Jul; 16(10):945-52. PubMed ID: 10870105 [TBL] [Abstract][Full Text] [Related]
14. Cytosolic redox metabolism in aerobic chemostat cultures of Saccharomyces cerevisiae. Påhlman IL; Gustafsson L; Rigoulet M; Larsson C Yeast; 2001 May; 18(7):611-20. PubMed ID: 11329172 [TBL] [Abstract][Full Text] [Related]
15. A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis. Goffrini P; Wésolowski-Louvel M; Ferrero I Mol Gen Genet; 1991 Sep; 228(3):401-9. PubMed ID: 1896011 [TBL] [Abstract][Full Text] [Related]
16. Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359. Kiers J; Zeeman AM; Luttik M; Thiele C; Castrillo JI; Steensma HY; van Dijken JP; Pronk JT Yeast; 1998 Mar; 14(5):459-69. PubMed ID: 9559553 [TBL] [Abstract][Full Text] [Related]
17. A functional analysis of Kluyveromyces lactis glutathione reductase. García-Leiro A; Cerdán ME; González-Siso MI Yeast; 2010 Jul; 27(7):431-41. PubMed ID: 20148387 [TBL] [Abstract][Full Text] [Related]
18. The oxygen level determines the fermentation pattern in Kluyveromyces lactis. Merico A; Galafassi S; Piskur J; Compagno C FEMS Yeast Res; 2009 Aug; 9(5):749-56. PubMed ID: 19500150 [TBL] [Abstract][Full Text] [Related]
19. Kinetic properties of native and mutagenized isoforms of mitochondrial alcohol dehydrogenase III purified from Kluyveromyces lactis. Brisdelli F; Saliola M; Pascarella S; Luzi C; Franceschini N; Falcone C; Martini F; Bozzi A Biochimie; 2004; 86(9-10):705-12. PubMed ID: 15556281 [TBL] [Abstract][Full Text] [Related]
20. Deletion of the glucose-6-phosphate dehydrogenase gene KlZWF1 affects both fermentative and respiratory metabolism in Kluyveromyces lactis. Saliola M; Scappucci G; De Maria I; Lodi T; Mancini P; Falcone C Eukaryot Cell; 2007 Jan; 6(1):19-27. PubMed ID: 17085636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]