These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12112305)

  • 1. Induction of caspase-mediated apoptosis and cell-cycle G1 arrest by selenium metabolite methylselenol.
    Wang Z; Jiang C; Lü J
    Mol Carcinog; 2002 Jul; 34(3):113-20. PubMed ID: 12112305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimitogenic and proapoptotic activities of methylseleninic acid in vascular endothelial cells and associated effects on PI3K-AKT, ERK, JNK and p38 MAPK signaling.
    Wang Z; Jiang C; Ganther H; Lü J
    Cancer Res; 2001 Oct; 61(19):7171-8. PubMed ID: 11585751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct effects of methylseleninic acid versus selenite on apoptosis, cell cycle, and protein kinase pathways in DU145 human prostate cancer cells.
    Jiang C; Wang Z; Ganther H; Lü J
    Mol Cancer Ther; 2002 Oct; 1(12):1059-66. PubMed ID: 12481429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylselenol, a selenium metabolite, plays common and different roles in cancerous colon HCT116 cell and noncancerous NCM460 colon cell proliferation.
    Zeng H; Briske-Anderson M; Wu M; Moyer MP
    Nutr Cancer; 2012; 64(1):128-35. PubMed ID: 22171558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylselenol generated from selenomethionine by methioninase downregulates integrin expression and induces caspase-mediated apoptosis of B16F10 melanoma cells.
    Kim A; Oh JH; Park JM; Chung AS
    J Cell Physiol; 2007 Aug; 212(2):386-400. PubMed ID: 17348006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methyl selenium-induced vascular endothelial apoptosis is executed by caspases and principally mediated by p38 MAPK pathway.
    Jiang C; Kim KH; Wang Z; Lü J
    Nutr Cancer; 2004; 49(2):174-83. PubMed ID: 15489211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deoxycholic acid and selenium metabolite methylselenol exert common and distinct effects on cell cycle, apoptosis, and MAP kinase pathway in HCT116 human colon cancer cells.
    Zeng H; Botnen JH; Briske-Anderson M
    Nutr Cancer; 2010; 62(1):85-92. PubMed ID: 20043263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PKB/AKT and ERK regulation of caspase-mediated apoptosis by methylseleninic acid in LNCaP prostate cancer cells.
    Hu H; Jiang C; Li G; Lü J
    Carcinogenesis; 2005 Aug; 26(8):1374-81. PubMed ID: 15845651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methioninase and selenomethionine but not Se-methylselenocysteine generate methylselenol and superoxide in an in vitro chemiluminescent assay: implications for the nutritional carcinostatic activity of selenoamino acids.
    Spallholz JE; Palace VP; Reid TW
    Biochem Pharmacol; 2004 Feb; 67(3):547-54. PubMed ID: 15037206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caspases as key executors of methyl selenium-induced apoptosis (anoikis) of DU-145 prostate cancer cells.
    Jiang C; Wang Z; Ganther H; Lu J
    Cancer Res; 2001 Apr; 61(7):3062-70. PubMed ID: 11306488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylseleninic acid potentiates apoptosis induced by chemotherapeutic drugs in androgen-independent prostate cancer cells.
    Hu H; Jiang C; Ip C; Rustum YM; Lü J
    Clin Cancer Res; 2005 Mar; 11(6):2379-88. PubMed ID: 15788689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monomethyl selenium--specific inhibition of MMP-2 and VEGF expression: implications for angiogenic switch regulation.
    Jiang C; Ganther H; Lu J
    Mol Carcinog; 2000 Dec; 29(4):236-50. PubMed ID: 11170262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylselenol, a selenium metabolite, induces cell cycle arrest in G1 phase and apoptosis via the extracellular-regulated kinase 1/2 pathway and other cancer signaling genes.
    Zeng H; Wu M; Botnen JH
    J Nutr; 2009 Sep; 139(9):1613-8. PubMed ID: 19625696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylselenol, a selenium metabolite, modulates p53 pathway and inhibits the growth of colon cancer xenografts in Balb/c mice.
    Zeng H; Cheng WH; Johnson LK
    J Nutr Biochem; 2013 May; 24(5):776-80. PubMed ID: 22841391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistent p21Cip1 induction mediates G(1) cell cycle arrest by methylseleninic acid in DU145 prostate cancer cells.
    Wang Z; Lee HJ; Chai Y; Hu H; Wang L; Zhang Y; Jiang C; Lü J
    Curr Cancer Drug Targets; 2010 May; 10(3):307-18. PubMed ID: 20370687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced sensitivity of human oral carcinomas to induction of apoptosis by selenium compounds: involvement of mitogen-activated protein kinase and Fas pathways.
    Ghose A; Fleming J; El-Bayoumy K; Harrison PR
    Cancer Res; 2001 Oct; 61(20):7479-87. PubMed ID: 11606383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth inhibition of astrocytoma cells by farnesyl transferase inhibitors is mediated by a combination of anti-proliferative, pro-apoptotic and anti-angiogenic effects.
    Feldkamp MM; Lau N; Guha A
    Oncogene; 1999 Dec; 18(52):7514-26. PubMed ID: 10602510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylseleninic acid inhibits microvascular endothelial G1 cell cycle progression and decreases tumor microvessel density.
    Wang Z; Hu H; Li G; Lee HJ; Jiang C; Kim SH; Lü J
    Int J Cancer; 2008 Jan; 122(1):15-24. PubMed ID: 17847021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells.
    Andreozzi F; Laratta E; Sciacqua A; Perticone F; Sesti G
    Circ Res; 2004 May; 94(9):1211-8. PubMed ID: 15044323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms controlling cell cycle arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells.
    Pidgeon GP; Kandouz M; Meram A; Honn KV
    Cancer Res; 2002 May; 62(9):2721-7. PubMed ID: 11980674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.