These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 12112679)
1. Prediction of protein solvent accessibility using support vector machines. Yuan Z; Burrage K; Mattick JS Proteins; 2002 Aug; 48(3):566-70. PubMed ID: 12112679 [TBL] [Abstract][Full Text] [Related]
2. [Prediction of protein solvent accessibility with Markov chain model]. Wang M; Li A; Wang X; Feng H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1109-13. PubMed ID: 17121365 [TBL] [Abstract][Full Text] [Related]
3. Prediction of protein relative solvent accessibility with support vector machines and long-range interaction 3D local descriptor. Kim H; Park H Proteins; 2004 Feb; 54(3):557-62. PubMed ID: 14748002 [TBL] [Abstract][Full Text] [Related]
4. Predicting protein secondary structure and solvent accessibility with an improved multiple linear regression method. Qin S; He Y; Pan XM Proteins; 2005 Nov; 61(3):473-80. PubMed ID: 16152601 [TBL] [Abstract][Full Text] [Related]
5. Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure. Garg A; Kaur H; Raghava GP Proteins; 2005 Nov; 61(2):318-24. PubMed ID: 16106377 [TBL] [Abstract][Full Text] [Related]
6. Prediction of protein solvent accessibility using fuzzy k-nearest neighbor method. Sim J; Kim SY; Lee J Bioinformatics; 2005 Jun; 21(12):2844-9. PubMed ID: 15814555 [TBL] [Abstract][Full Text] [Related]
7. QBES: predicting real values of solvent accessibility from sequences by efficient, constrained energy optimization. Xu Z; Zhang C; Liu S; Zhou Y Proteins; 2006 Jun; 63(4):961-6. PubMed ID: 16514609 [TBL] [Abstract][Full Text] [Related]
8. Accurate prediction of solvent accessibility using neural networks-based regression. Adamczak R; Porollo A; Meller J Proteins; 2004 Sep; 56(4):753-67. PubMed ID: 15281128 [TBL] [Abstract][Full Text] [Related]
9. Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training. Dor O; Zhou Y Proteins; 2007 Mar; 66(4):838-45. PubMed ID: 17177203 [TBL] [Abstract][Full Text] [Related]
10. Prediction of turn types in protein structure by machine-learning classifiers. Meissner M; Koch O; Klebe G; Schneider G Proteins; 2009 Feb; 74(2):344-52. PubMed ID: 18618702 [TBL] [Abstract][Full Text] [Related]
12. Highly accurate and consistent method for prediction of helix and strand content from primary protein sequences. Ruan J; Wang K; Yang J; Kurgan LA; Cios K Artif Intell Med; 2005; 35(1-2):19-35. PubMed ID: 16081261 [TBL] [Abstract][Full Text] [Related]
13. SVM-Cabins: prediction of solvent accessibility using accumulation cutoff set and support vector machine. Wang JY; Lee HM; Ahmad S Proteins; 2007 Jul; 68(1):82-91. PubMed ID: 17436325 [TBL] [Abstract][Full Text] [Related]
14. Prediction and evolutionary information analysis of protein solvent accessibility using multiple linear regression. Wang JY; Lee HM; Ahmad S Proteins; 2005 Nov; 61(3):481-91. PubMed ID: 16170780 [TBL] [Abstract][Full Text] [Related]
15. Combining prediction of secondary structure and solvent accessibility in proteins. Adamczak R; Porollo A; Meller J Proteins; 2005 May; 59(3):467-75. PubMed ID: 15768403 [TBL] [Abstract][Full Text] [Related]
16. A neural network method for prediction of beta-turn types in proteins using evolutionary information. Kaur H; Raghava GP Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798 [TBL] [Abstract][Full Text] [Related]
17. A method for protein accessibility prediction based on residue types and conformational states. Zarei R; Arab S; Sadeghi M Comput Biol Chem; 2007 Oct; 31(5-6):384-8. PubMed ID: 17888743 [TBL] [Abstract][Full Text] [Related]
18. Prediction of protein relative solvent accessibility with a two-stage SVM approach. Nguyen MN; Rajapakse JC Proteins; 2005 Apr; 59(1):30-7. PubMed ID: 15696542 [TBL] [Abstract][Full Text] [Related]
19. Improving protein secondary structure prediction using a multi-modal BP method. Qu W; Sui H; Yang B; Qian W Comput Biol Med; 2011 Oct; 41(10):946-59. PubMed ID: 21880310 [TBL] [Abstract][Full Text] [Related]
20. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. Hua S; Sun Z J Mol Biol; 2001 Apr; 308(2):397-407. PubMed ID: 11327775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]