These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 12112683)
1. Towards atomic resolution with crystals grown in gel: the case of thaumatin seen at room temperature. Sauter C; Lorber B; Giegé R Proteins; 2002 Aug; 48(2):146-50. PubMed ID: 12112683 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of thaumatin crystals grown on earth and in microgravity. Ng JD; Lorber B; Giege R; Koszelak S; Day J; Greenwood A; McPherson A Acta Crystallogr D Biol Crystallogr; 1997 Nov; 53(Pt 6):724-33. PubMed ID: 11540583 [TBL] [Abstract][Full Text] [Related]
3. Crystallization within agarose gel in microgravity improves the quality of thaumatin crystals. Lorber B; Sauter C; Robert MC; Capelle B; Giegé R Acta Crystallogr D Biol Crystallogr; 1999 Sep; 55(Pt 9):1491-4. PubMed ID: 10489443 [TBL] [Abstract][Full Text] [Related]
4. Crystal quality and differential crystal-growth behaviour of three proteins crystallized in gel at high hydrostatic pressure. Kadri A; Lorber B; Charron C; Robert MC; Capelle B; Damak M; Jenner G; Giegé R Acta Crystallogr D Biol Crystallogr; 2005 Jun; 61(Pt 6):784-8. PubMed ID: 15930640 [TBL] [Abstract][Full Text] [Related]
5. Macromolecular crystal growth experiments on International Microgravity Laboratory--1. Day J; McPherson A Protein Sci; 1992 Oct; 1(10):1254-68. PubMed ID: 1303744 [TBL] [Abstract][Full Text] [Related]
6. High resolution imaging as a characterization tool for biological crystals. Stojanoff V; Cappelle B; Epelboin Y; Hartwig J; Moradela AB; Otalora F Ann N Y Acad Sci; 2004 Nov; 1027():48-55. PubMed ID: 15644344 [TBL] [Abstract][Full Text] [Related]
7. Effects of a microgravity environment on the crystallization of biological macromolecules. McPherson A Microgravity Sci Technol; 1993 Jun; 6(2):101-9. PubMed ID: 11541857 [TBL] [Abstract][Full Text] [Related]
8. Growth and characterization of high-quality protein crystals for X-ray crystallography. Moreno A; Yokaichiya F; Dimasi E; Stojanoff V Ann N Y Acad Sci; 2009 Apr; 1161():429-36. PubMed ID: 19426336 [TBL] [Abstract][Full Text] [Related]
9. Growth and disorder of macromolecular crystals: insights from atomic force microscopy and X-ray diffraction studies. Malkin AJ; Thorne RE Methods; 2004 Nov; 34(3):273-99. PubMed ID: 15325647 [TBL] [Abstract][Full Text] [Related]
10. Protein crystal growth in microgravity-temperature induced large scale crystallization of insulin. Long MM; DeLucas LJ; Smith C; Carson M; Moore K; Harrington MD; Pillion DJ; Bishop SP; Rosenblum WM; Naumann RJ; Chait A; Prahl J; Bugg CE Microgravity Sci Technol; 1994 Jul; 7(2):196-202. PubMed ID: 11541852 [TBL] [Abstract][Full Text] [Related]
11. Crystallization in the presence of glycerol displaces water molecules in the structure of thaumatin. Charron C; Kadri A; Robert MC; Giegé R; Lorber B Acta Crystallogr D Biol Crystallogr; 2002 Dec; 58(Pt 12):2060-5. PubMed ID: 12454465 [TBL] [Abstract][Full Text] [Related]
12. In situ X-ray analysis of protein crystals in low-birefringent and X-ray transmissive plastic microchannels. Ng JD; Clark PJ; Stevens RC; Kuhn P Acta Crystallogr D Biol Crystallogr; 2008 Feb; 64(Pt 2):189-97. PubMed ID: 18219119 [TBL] [Abstract][Full Text] [Related]
13. X-ray analysis of new crystal forms of the sweet protein thaumatin. McPherson A; Weickmann J J Biomol Struct Dyn; 1990 Apr; 7(5):1053-60. PubMed ID: 2360997 [TBL] [Abstract][Full Text] [Related]
14. Protein crystal growth on board Shenzhou 3: a concerted effort improves crystal diffraction quality and facilitates structure determination. Han Y; Cang HX; Zhou JX; Wang YP; Bi RC; Colelesage J; Delbaere LT; Nahoum V; Shi R; Zhou M; Zhu DW; Lin SX Biochem Biophys Res Commun; 2004 Nov; 324(3):1081-6. PubMed ID: 15485665 [TBL] [Abstract][Full Text] [Related]
15. Structural consequences of hen egg-white lysozyme orthorhombic crystal growth in a high magnetic field: validation of X-ray diffraction intensity, conformational energy searching and quantitative analysis of B factors and mosaicity. Saijo S; Yamada Y; Sato T; Tanaka N; Matsui T; Sazaki G; Nakajima K; Matsuura Y Acta Crystallogr D Biol Crystallogr; 2005 Mar; 61(Pt 3):207-17. PubMed ID: 15735330 [TBL] [Abstract][Full Text] [Related]
16. Hydrogels coupled with self-assembled monolayers: an in vitro matrix to study calcite biomineralization. Li H; Estroff LA J Am Chem Soc; 2007 May; 129(17):5480-3. PubMed ID: 17411038 [TBL] [Abstract][Full Text] [Related]
17. Comparative analysis of thaumatin crystals grown on earth and in microgravity. Ng JD; Lorber B; Giegé R; Koszelak S; Day J; Greenwood A; McPherson A Acta Crystallogr D Biol Crystallogr; 1997 Nov; 53(Pt 6):724-33. PubMed ID: 15299861 [TBL] [Abstract][Full Text] [Related]
18. Effects of buoyancy-driven convection on nucleation and growth of protein crystals. Nanev CN; Penkova A; Chayen N Ann N Y Acad Sci; 2004 Nov; 1027():1-9. PubMed ID: 15644340 [TBL] [Abstract][Full Text] [Related]
19. Beam-size effects in radiation damage in insulin and thaumatin crystals. Schulze-Briese C; Wagner A; Tomizaki T; Oetiker M J Synchrotron Radiat; 2005 May; 12(Pt 3):261-7. PubMed ID: 15840909 [TBL] [Abstract][Full Text] [Related]
20. Thaumatin crystallization aboard the International Space Station using liquid-liquid diffusion in the Enhanced Gaseous Nitrogen Dewar (EGN). Barnes CL; Snell EH; Kundrot CE Acta Crystallogr D Biol Crystallogr; 2002 May; 58(Pt 5):751-60. PubMed ID: 11976485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]