These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 12112867)
21. Biochemical characterization of a thermostable DNA ligase from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5. Shi H; Huang Y; Gan Q; Rui M; Chen H; Tu C; Yang Z; Oger P; Zhang L Appl Microbiol Biotechnol; 2019 May; 103(9):3795-3806. PubMed ID: 30919103 [TBL] [Abstract][Full Text] [Related]
22. Ca2+-dependent maturation of subtilisin from a hyperthermophilic archaeon, Thermococcus kodakaraensis: the propeptide is a potent inhibitor of the mature domain but is not required for its folding. Pulido M; Saito K; Tanaka S; Koga Y; Morikawa M; Takano K; Kanaya S Appl Environ Microbiol; 2006 Jun; 72(6):4154-62. PubMed ID: 16751527 [TBL] [Abstract][Full Text] [Related]
23. Structural mechanism for coordination of proofreading and polymerase activities in archaeal DNA polymerases. Kuroita T; Matsumura H; Yokota N; Kitabayashi M; Hashimoto H; Inoue T; Imanaka T; Kai Y J Mol Biol; 2005 Aug; 351(2):291-8. PubMed ID: 16019029 [TBL] [Abstract][Full Text] [Related]
24. Efficient in vitro synthesis of cis-polyisoprenes using a thermostable cis-prenyltransferase from a hyperthermophilic archaeon Thermococcus kodakaraensis. Yamada Y; Fukuda W; Hirooka K; Hiromoto T; Nakayama J; Imanaka T; Fukusaki E; Fujiwara S J Biotechnol; 2009 Aug; 143(2):151-6. PubMed ID: 19583987 [TBL] [Abstract][Full Text] [Related]
25. Crystal structure of highly thermostable glycerol kinase from a hyperthermophilic archaeon in a dimeric form. Koga Y; Katsumi R; You DJ; Matsumura H; Takano K; Kanaya S FEBS J; 2008 May; 275(10):2632-43. PubMed ID: 18422647 [TBL] [Abstract][Full Text] [Related]
26. [Isolation and characteristics of new thermostable DNA ligase from archaea of the genus Thermococcus]. Smagin VA; Mardanov AV; Bonch-Osmolovskaia EA; Ravin NV Prikl Biokhim Mikrobiol; 2008; 44(5):523-8. PubMed ID: 18822770 [TBL] [Abstract][Full Text] [Related]
27. Molecular adaptation strategies to high temperature and thermal denaturation mechanism of the D-trehalose/D-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis. Fessas D; Staiano M; Barbiroli A; Marabotti A; Schiraldi A; Varriale A; Rossi M; D'Auria S Proteins; 2007 Jun; 67(4):1002-9. PubMed ID: 17373708 [TBL] [Abstract][Full Text] [Related]
28. Characterization of prolyl oligopeptidase from hyperthermophilic archaeon Thermococcus sp. NA1. Lee HS; Kim YJ; Cho Y; Kim SJ; Lee JH; Kang SG J Biosci Bioeng; 2007 Mar; 103(3):221-8. PubMed ID: 17434424 [TBL] [Abstract][Full Text] [Related]
29. Archaeal type III RuBisCOs function in a pathway for AMP metabolism. Sato T; Atomi H; Imanaka T Science; 2007 Feb; 315(5814):1003-6. PubMed ID: 17303759 [TBL] [Abstract][Full Text] [Related]
30. Enzymatic and structural characterization of type II isopentenyl diphosphate isomerase from hyperthermophilic archaeon Thermococcus kodakaraensis. Siddiqui MA; Yamanaka A; Hirooka K; Bamaba T; Kobayashi A; Imanaka T; Fukusaki E; Fujiwara S Biochem Biophys Res Commun; 2005 Jun; 331(4):1127-36. PubMed ID: 15882994 [TBL] [Abstract][Full Text] [Related]
31. Stabilization of free and immobilized enzymes using hyperthermophilic chaperonin. Kohda J; Kawanishi H; Suehara K; Nakano Y; Yano T J Biosci Bioeng; 2006 Feb; 101(2):131-6. PubMed ID: 16569608 [TBL] [Abstract][Full Text] [Related]
32. Identification of archaeon-producing hyperthermophilic alpha-amylase and characterization of the alpha-amylase. Wang S; Lu Z; Lu M; Qin S; Liu H; Deng X; Lin Q; Chen J Appl Microbiol Biotechnol; 2008 Sep; 80(4):605-14. PubMed ID: 18587570 [TBL] [Abstract][Full Text] [Related]
33. Engineering of a type III rubisco from a hyperthermophilic archaeon in order to enhance catalytic performance in mesophilic host cells. Yoshida S; Atomi H; Imanaka T Appl Environ Microbiol; 2007 Oct; 73(19):6254-61. PubMed ID: 17675435 [TBL] [Abstract][Full Text] [Related]
34. Expression, purification, crystallization and preliminary crystallographic analysis of a thermostable DNA ligase from the archaeon Thermococcus sibiricus. Petrova TE; Bezsudnova EY; Dorokhov BD; Slutskaya ES; Polyakov KM; Dorovatovskiy PV; Ravin NV; Skryabin KG; Kovalchuk MV; Popov VO Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Feb; 68(Pt 2):163-5. PubMed ID: 22297989 [TBL] [Abstract][Full Text] [Related]
35. The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis. Orita I; Sato T; Yurimoto H; Kato N; Atomi H; Imanaka T; Sakai Y J Bacteriol; 2006 Jul; 188(13):4698-704. PubMed ID: 16788179 [TBL] [Abstract][Full Text] [Related]
36. Crystal structure of a novel-type archaeal rubisco with pentagonal symmetry. Kitano K; Maeda N; Fukui T; Atomi H; Imanaka T; Miki K Structure; 2001 Jun; 9(6):473-81. PubMed ID: 11435112 [TBL] [Abstract][Full Text] [Related]
37. Subunit interfaces of oligomeric hyperthermophilic enzymes display enhanced compactness. Baldasseroni F; Pascarella S Int J Biol Macromol; 2009 May; 44(4):353-60. PubMed ID: 19428466 [TBL] [Abstract][Full Text] [Related]
38. Thermostability and thermoactivity of enzymes from hyperthermophilic Archaea. Adams MW; Kelly RM Bioorg Med Chem; 1994 Jul; 2(7):659-67. PubMed ID: 7858973 [TBL] [Abstract][Full Text] [Related]
39. A novel branching enzyme of the GH-57 family in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Murakami T; Kanai T; Takata H; Kuriki T; Imanaka T J Bacteriol; 2006 Aug; 188(16):5915-24. PubMed ID: 16885460 [TBL] [Abstract][Full Text] [Related]
40. Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon using a host-marker system based on antibiotic resistance. Matsumi R; Manabe K; Fukui T; Atomi H; Imanaka T J Bacteriol; 2007 Apr; 189(7):2683-91. PubMed ID: 17259314 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]