These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 12113358)
1. Michigan basin regional ground water flow discharge to three Great Lakes. Hoaglund JR; Huffman GC; Grannemann NG Ground Water; 2002; 40(4):390-405. PubMed ID: 12113358 [TBL] [Abstract][Full Text] [Related]
2. Revisiting a classification scheme for U.S.-Mexico alluvial basin-fill aquifers. Hibbs BJ; Darling BK Ground Water; 2005; 43(5):750-63. PubMed ID: 16149972 [TBL] [Abstract][Full Text] [Related]
3. Geographical distribution (2000) and temporal trends (1981-2000) of brominated diphenyl ethers in Great Lakes hewing gull eggs. Norstrom RJ; Simon M; Moisey J; Wakeford B; Weseloh DV Environ Sci Technol; 2002 Nov; 36(22):4783-9. PubMed ID: 12487300 [TBL] [Abstract][Full Text] [Related]
4. Lake Huron's Phosphorus Contributions to the St. Clair-Detroit River Great Lakes Connecting Channel. Scavia D; Anderson EJ; Dove A; Hill B; Long CM; Wang YC Environ Sci Technol; 2020 May; 54(9):5550-5559. PubMed ID: 32271010 [TBL] [Abstract][Full Text] [Related]
5. Delineation of regional arid karstic aquifers: an integrative data approach. Wolaver BD; Sharp JM; Rodriguez JM; Flores JC Ground Water; 2008; 46(3):396-413. PubMed ID: 18194323 [TBL] [Abstract][Full Text] [Related]
6. Spatial patterns and rankings of contaminant concentrations in Herring Gull eggs from 15 sites in the Great Lakes and connecting channels, 1998-2002. Weseloh DV; Pekarik C; De Solla SR Environ Monit Assess; 2006 Feb; 113(1-3):265-84. PubMed ID: 16491432 [TBL] [Abstract][Full Text] [Related]
7. Estimating recharge distribution by incorporating runoff from mountainous areas in an alluvial basin in the Great Basin region of the southwestern United States. Stone DB; Moomaw CL; Davis A Ground Water; 2001; 39(6):807-18. PubMed ID: 11708447 [TBL] [Abstract][Full Text] [Related]
8. Ground water recharge and flow characterization using multiple isotopes. Chowdhury AH; Uliana M; Wade S Ground Water; 2008; 46(3):426-36. PubMed ID: 18384592 [TBL] [Abstract][Full Text] [Related]
9. A dynamic multimedia environmental and bioaccumulation model for brominated flame retardants in Lake Huron and Lake Erie, USA. Lim DH; Lastoskie CM Environ Toxicol Chem; 2011 May; 30(5):1018-25. PubMed ID: 21312244 [TBL] [Abstract][Full Text] [Related]
10. Polybrominated diphenyl ethers in the sediments of the Great Lakes. 2. Lakes Michigan and Huron. Song W; Li A; Ford JC; Sturchio NC; Rockne KJ; Buckley DR; Mills WJ Environ Sci Technol; 2005 May; 39(10):3474-9. PubMed ID: 15954222 [TBL] [Abstract][Full Text] [Related]
11. Spatial and temporal trends in poly- and per-fluorinated compounds in the Laurentian Great Lakes Erie, Ontario and St. Clair. Codling G; Sturchio NC; Rockne KJ; Li A; Peng H; Tse TJ; Jones PD; Giesy JP Environ Pollut; 2018 Jun; 237():396-405. PubMed ID: 29502002 [TBL] [Abstract][Full Text] [Related]
12. Polybrominated diphenyl ethers and polybrominated biphenyls in sediment and floodplain soils of the Saginaw River watershed, Michigan, USA. Yun SH; Addink R; McCabe JM; Ostaszewski A; Mackenzie-Taylor D; Taylor AB; Kannan K Arch Environ Contam Toxicol; 2008 Jul; 55(1):1-10. PubMed ID: 18049786 [TBL] [Abstract][Full Text] [Related]
13. Use of 87Sr/86Sr and delta11B to identify slag-affected sediment in southern Lake Michigan. Bayless ER; Bullen TD; Fitzpatrick JA Environ Sci Technol; 2004 Mar; 38(5):1330-7. PubMed ID: 15046333 [TBL] [Abstract][Full Text] [Related]
14. Distributions of Cisco (Coregonus artedi) in the upper Great Lakes in the mid-twentieth century, when populations were in decline. Kao YC; Renauer-Bova RE; Bunnell DB; Gorman OT; Eshenroder RL PLoS One; 2022; 17(12):e0276109. PubMed ID: 36548254 [TBL] [Abstract][Full Text] [Related]
15. Temporal and spatial trends in chlorinated hydrocarbon concentrations of mink in Canadian Lakes Erie and St. Clair. Martin PA; McDaniel TV; Hunter B Environ Monit Assess; 2006 Feb; 113(1-3):245-63. PubMed ID: 16502039 [TBL] [Abstract][Full Text] [Related]
17. Spatial and temporal patterns in mercury contamination in sediments of the Laurentian Great Lakes. Marvin C; Painter S; Rossmann R Environ Res; 2004 Jul; 95(3):351-62. PubMed ID: 15220069 [TBL] [Abstract][Full Text] [Related]
18. Metolachlor and atrazine in the great lakes. Kurt-Karakus PB; Muir DC; Bidleman TF; Small J; Backus S; Dove A Environ Sci Technol; 2010 Jun; 44(12):4678-84. PubMed ID: 20504016 [TBL] [Abstract][Full Text] [Related]
19. Occurrence of Atrazine and Related Compounds in Sediments of Upper Great Lakes. Guo J; Li Z; Ranasinghe P; Bonina S; Hosseini S; Corcoran MB; Smalley C; Kaliappan R; Wu Y; Chen D; Sandy AL; Wang Y; Rockne KJ; Sturchio NC; Giesy JP; Li A Environ Sci Technol; 2016 Jul; 50(14):7335-43. PubMed ID: 27322944 [TBL] [Abstract][Full Text] [Related]
20. Methodology and determination of tetradecabromo-1, 4-diphenoxybenzene flame retardant and breakdown by-products in sediments from the Laurentian Great Lakes. Trouborst L; Chu S; Chen D; Letcher RJ Chemosphere; 2015 Jan; 118():342-49. PubMed ID: 25463260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]