These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 12115042)
21. Degradation of trichloroethylene by Fenton reaction in pyrite suspension. Che H; Bae S; Lee W J Hazard Mater; 2011 Jan; 185(2-3):1355-61. PubMed ID: 21071138 [TBL] [Abstract][Full Text] [Related]
22. Removal of cyanide adsorbed on pyrite by H Tu Y; Han P; Wei L; Zhang X; Yu B; Qian P; Ye S J Environ Sci (China); 2019 Apr; 78():287-292. PubMed ID: 30665647 [TBL] [Abstract][Full Text] [Related]
23. Application of Silicate-Based Coating on Pyrite and Arsenopyrite to Inhibit Acid Mine Drainage. Kollias K; Mylona E; Papassiopi N; Thymi S Bull Environ Contam Toxicol; 2022 Mar; 108(3):532-540. PubMed ID: 34251461 [TBL] [Abstract][Full Text] [Related]
24. Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: column experiments. Pérez-López R; Nieto JM; de Almodóvar GR Chemosphere; 2007 Apr; 67(8):1637-46. PubMed ID: 17257643 [TBL] [Abstract][Full Text] [Related]
25. Modeling and analysis of biooxidation of gold bearing pyrite-arsenopyrite concentrates by Thiobacillus ferrooxidans. Chandraprabha MN; Modak JM; Natarajan KA; Raichur AM Biotechnol Prog; 2003; 19(4):1244-54. PubMed ID: 12892487 [TBL] [Abstract][Full Text] [Related]
26. Inhibition of pyrite oxidation by surface coating: a long-term field study. Kang CU; Jeon BH; Park SS; Kang JS; Kim KH; Kim DK; Choi UK; Kim SJ Environ Geochem Health; 2016 Oct; 38(5):1137-1146. PubMed ID: 26493832 [TBL] [Abstract][Full Text] [Related]
27. Aqueous geochemical and surface science investigation of the effect of phosphate on pyrite oxidation. Elsetinow AR; Schoonen MA; Strongin DR Environ Sci Technol; 2001 Jun; 35(11):2252-7. PubMed ID: 11414026 [TBL] [Abstract][Full Text] [Related]
28. Adsorption of molybdate and tetrathiomolybdate onto pyrite and goethite: effect of pH and competitive anions. Xu N; Christodoulatos C; Braida W Chemosphere; 2006 Mar; 62(10):1726-35. PubMed ID: 16084558 [TBL] [Abstract][Full Text] [Related]
29. Performance and mechanisms of PropS-SH/Ce(dbp) Feng J; Zhou C; Yang Q; Dang Z; Zhang L Environ Pollut; 2023 Apr; 322():121162. PubMed ID: 36716950 [TBL] [Abstract][Full Text] [Related]
30. Treating waste with waste: Lignin acting as both an effective bactericide and passivator to prevent acid mine drainage formation at the source. Gao B; Han Z; Cheng H; Zhou H; Wang Y; Chen Z Sci Total Environ; 2024 Jun; 927():172162. PubMed ID: 38569954 [TBL] [Abstract][Full Text] [Related]
31. Definition of redox and pH influence in the AMD mine system using a fuzzy qualitative tool (Iberian Pyrite Belt, SW Spain). de la Torre ML; Grande JA; Valente T; Perez-Ostalé E; Santisteban M; Aroba J; Ramos I Environ Sci Pollut Res Int; 2016 Mar; 23(6):5451-8. PubMed ID: 26566614 [TBL] [Abstract][Full Text] [Related]
32. Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans. Bosch J; Lee KY; Jordan G; Kim KW; Meckenstock RU Environ Sci Technol; 2012 Feb; 46(4):2095-101. PubMed ID: 22142180 [TBL] [Abstract][Full Text] [Related]
33. Effect of Nitrate Ions on Acidithiobacillus ferrooxidans-Mediated Bio-oxidation of Ferrous Ions and Pyrite. Liu FW; Qiao XX; Xing K; Shi J; Zhou LX; Dong Y; Bi WL; Zhang J Curr Microbiol; 2020 Jun; 77(6):1070-1080. PubMed ID: 32036394 [TBL] [Abstract][Full Text] [Related]
34. Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Rawlings DE; Tributsch H; Hansford GS Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():5-13. PubMed ID: 10206710 [No Abstract] [Full Text] [Related]
35. [Dependence of the genotypic characteristics of Acidithiobacillus ferrooxidans on the physical, chemical, and electrophysical properties of pyrites]. Tupikina OV; Kondrat'eva TF; Samorukova VD; Rassulov VA; Karavaĭko GI Mikrobiologiia; 2005; 74(5):596-603. PubMed ID: 16315977 [TBL] [Abstract][Full Text] [Related]
37. Synergistic promotion of antimony transformation in the interaction of Acidithiobacillus ferrooxidans and pyrite by driving the formation of reactive oxygen species and secondary minerals. He P; Yang Q; Gu C; Liu M; Li P; Luo T; Chen J; Chen J; Zhu J; Gan M Chemosphere; 2024 Sep; 363():142955. PubMed ID: 39069100 [TBL] [Abstract][Full Text] [Related]
38. Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes. Park I; Tabelin CB; Seno K; Jeon S; Ito M; Hiroyoshi N Chemosphere; 2018 Aug; 205():414-425. PubMed ID: 29704849 [TBL] [Abstract][Full Text] [Related]
39. Pyrite oxidation under simulated acid rain weathering conditions. Zheng K; Li H; Wang L; Wen X; Liu Q Environ Sci Pollut Res Int; 2017 Sep; 24(27):21710-21720. PubMed ID: 28762047 [TBL] [Abstract][Full Text] [Related]
40. Inhibition of pyrite oxidation using PropS-SH/sepiolite composite coatings for the source control of acid mine drainage. Gong B; Li D; Niu Z; Liu Y; Dang Z Environ Sci Pollut Res Int; 2021 Mar; 28(9):11090-11105. PubMed ID: 33108643 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]