BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 12115053)

  • 21. Physiological control and regulation of the Rhodobacter capsulatus cbb operons.
    Paoli GC; Vichivanives P; Tabita FR
    J Bacteriol; 1998 Aug; 180(16):4258-69. PubMed ID: 9696777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CbbR, a LysR-type transcriptional activator, is required for expression of the autotrophic CO2 fixation enzymes of Xanthobacter flavus.
    van den Bergh ER; Dijkhuizen L; Meijer WG
    J Bacteriol; 1993 Oct; 175(19):6097-104. PubMed ID: 8407781
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential expression of the CO2 fixation operons of Rhodobacter sphaeroides by the Prr/Reg two-component system during chemoautotrophic growth.
    Gibson JL; Dubbs JM; Tabita FR
    J Bacteriol; 2002 Dec; 184(23):6654-64. PubMed ID: 12426354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Operator binding of the CbbR protein, which activates the duplicate cbb CO2 assimilation operons of Alcaligenes eutrophus.
    Kusian B; Bowien B
    J Bacteriol; 1995 Nov; 177(22):6568-74. PubMed ID: 7592435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Something from almost nothing: carbon dioxide fixation in chemoautotrophs.
    Shively JM; van Keulen G; Meijer WG
    Annu Rev Microbiol; 1998; 52():191-230. PubMed ID: 9891798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, carbon fixation in A. ferrooxidans.
    Esparza M; Cárdenas JP; Bowien B; Jedlicki E; Holmes DS
    BMC Microbiol; 2010 Aug; 10():229. PubMed ID: 20799944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Calvin cycle enzyme phosphoglycerate kinase of Xanthobacter flavus required for autotrophic CO2 fixation is not encoded by the cbb operon.
    Meijer WG
    J Bacteriol; 1994 Oct; 176(19):6120-6. PubMed ID: 7928974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic signals that lead to control of CBB gene expression in Rhodobacter capsulatus.
    Tichi MA; Tabita FR
    J Bacteriol; 2002 Apr; 184(7):1905-15. PubMed ID: 11889097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Positive and negative regulation of sequences upstream of the form II cbb CO2 fixation operon of Rhodobacter sphaeroides.
    Xu HH; Tabita FR
    J Bacteriol; 1994 Dec; 176(23):7299-308. PubMed ID: 7961502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unravelling the regulatory twist--regulation of CO2 fixation in Rhodopseudomonas palustris CGA010 mediated by atypical response regulator(s).
    Joshi GS; Bobst CE; Tabita FR
    Mol Microbiol; 2011 May; 80(3):756-71. PubMed ID: 21362064
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Up-regulated expression of the cbb(I) and cbb(II) operons during photoheterotrophic growth of a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion mutant of Rhodobacter sphaeroides.
    Smith SA; Tabita FR
    J Bacteriol; 2002 Dec; 184(23):6721-4. PubMed ID: 12426361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amino acid residues of RegA important for interactions with the CbbR-DNA complex of Rhodobacter sphaeroides.
    Dangel AW; Luther A; Tabita FR
    J Bacteriol; 2014 Sep; 196(17):3179-90. PubMed ID: 24957624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA binding of wild type RegA protein and its differential effect on the expression of pigment binding proteins in Rhodobacter capsulatus.
    Hemschemeier SK; Kirndörfer M; Hebermehl M; Klug G
    J Mol Microbiol Biotechnol; 2000 Apr; 2(2):235-43. PubMed ID: 10939249
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of the duplicate ribulose-1,5-bisphosphate carboxylase genes and cbb promoters of Alcaligenes eutrophus.
    Kusian B; Bednarski R; Husemann M; Bowien B
    J Bacteriol; 1995 Aug; 177(15):4442-50. PubMed ID: 7543477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The hydrogen-sensing apparatus in Ralstonia eutropha.
    Lenz O; Bernhard M; Buhrke T; Schwartz E; Friedrich B
    J Mol Microbiol Biotechnol; 2002 May; 4(3):255-62. PubMed ID: 11931556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of CO2 assimilation in Ralstonia eutropha: premature transcription termination within the cbb operon.
    Schäferjohann J; Bednarski R; Bowien B
    J Bacteriol; 1996 Dec; 178(23):6714-9. PubMed ID: 8955287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induction of the gap-pgk operon encoding glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase of Xanthobacter flavus requires the LysR-type transcriptional activator CbbR.
    Meijer WG; van den Bergh ER; Smith LM
    J Bacteriol; 1996 Feb; 178(3):881-7. PubMed ID: 8550526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CbbR, a LysR-type transcriptional regulator from Hydrogenophilus thermoluteolus, binds two cbb promoter regions.
    Terazono K; Hayashi NR; Igarashi Y
    FEMS Microbiol Lett; 2001 May; 198(2):151-7. PubMed ID: 11430407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New Insight into the Role of the Calvin Cycle: Reutilization of CO2 Emitted through Sugar Degradation.
    Shimizu R; Dempo Y; Nakayama Y; Nakamura S; Bamba T; Fukusaki E; Fukui T
    Sci Rep; 2015 Jul; 5():11617. PubMed ID: 26130086
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks.
    Rodionov DA; Dubchak IL; Arkin AP; Alm EJ; Gelfand MS
    PLoS Comput Biol; 2005 Oct; 1(5):e55. PubMed ID: 16261196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.