These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 12115120)
1. Lipase-catalyzed acidolysis of menhaden oil with conjugated linoleic acid: effect of water content. Torres CF; Hill CG Biotechnol Bioeng; 2002 Jun; 78(5):509-16. PubMed ID: 12115120 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of glycerides containing n-3 fatty acids and conjugated linoleic acid by solvent-free acidolysis of fish oil. Garcia HS; Arcos JA; Ward DJ; Hill CG Biotechnol Bioeng; 2000 Dec; 70(5):587-91. PubMed ID: 11042555 [TBL] [Abstract][Full Text] [Related]
3. Acidolysis of tristearin with selected long-chain fatty acids. Hamam F; Shahidi F J Agric Food Chem; 2007 Mar; 55(5):1955-60. PubMed ID: 17288439 [TBL] [Abstract][Full Text] [Related]
4. Dual response surface-optimized synthesis of L-menthyl conjugated linoleate in solvent-free system by Candida rugosa lipase. Li Z; Wang Y; Li J; Wang P; Wei W; Gao Y; Fu C; Dong W Bioresour Technol; 2010 Feb; 101(4):1305-9. PubMed ID: 19833506 [TBL] [Abstract][Full Text] [Related]
5. Lipase-catalyzed ethanolysis of fish oils: multi-response kinetics. Torres CF; Moeljadi M; Hill CG Biotechnol Bioeng; 2003 Aug; 83(3):274-81. PubMed ID: 12783483 [TBL] [Abstract][Full Text] [Related]
6. Lipase-catalyzed esterification of conjugated linoleic acid with L-carnitine in solvent-free system and acetonitrile. Li Z; Yang D; Jiang L; Ji J; Ji H; Zeng X Bioprocess Biosyst Eng; 2007 Sep; 30(5):331-6. PubMed ID: 17503088 [TBL] [Abstract][Full Text] [Related]
7. Acidolysis and glyceride synthesis reactions using fatty acids with two Pseudomonas lipases having different substrate specificities. Kojima Y; Sakuradani E; Shimizu S J Biosci Bioeng; 2006 Sep; 102(3):179-83. PubMed ID: 17046530 [TBL] [Abstract][Full Text] [Related]
8. Lipase-mediated acidolysis of butteroil with free conjugated linoleic acid in a packed bed reactor. Sehanputri PS; Hill CG Biotechnol Bioeng; 2003 Sep; 83(5):608-17. PubMed ID: 12827703 [TBL] [Abstract][Full Text] [Related]
9. Production of n-3 polyunsaturated fatty acid concentrate from sardine oil by immobilized Candida rugosa lipase. Okada T; Morrissey MT J Food Sci; 2008 Apr; 73(3):C146-50. PubMed ID: 18387091 [TBL] [Abstract][Full Text] [Related]
10. Purification of conjugated linoleic acid isomers through a process including lipase-catalyzed selective esterification. Nagao T; Yamauchi-Sato Y; Sugihara A; Iwata T; Nagao K; Yanagita T; Adachi S; Shimada Y Biosci Biotechnol Biochem; 2003 Jun; 67(6):1429-33. PubMed ID: 12843679 [TBL] [Abstract][Full Text] [Related]
11. Interesterification (acidolysis) of butterfat with conjugated linoleic acid in a batch reactor. Garcia HS; Keough KJ; Arcos JA; Hill CG J Dairy Sci; 2000 Mar; 83(3):371-7. PubMed ID: 10750090 [TBL] [Abstract][Full Text] [Related]
12. Lipase-catalyzed esterification of conjugated linoleic acid with sorbitol: a kinetic study. Torres CF; Lessard LP; Hill CG Biotechnol Prog; 2003; 19(4):1255-60. PubMed ID: 12892488 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil. Kahveci D; Xu X Biotechnol Lett; 2011 Oct; 33(10):2065-71. PubMed ID: 21695486 [TBL] [Abstract][Full Text] [Related]
14. Acidolysis of p-coumaric acid with omega-3 oils and antioxidant activity of phenolipid products in in vitro and biological model systems. Wang J; Shahidi F J Agric Food Chem; 2014 Jan; 62(2):454-61. PubMed ID: 24295081 [TBL] [Abstract][Full Text] [Related]
15. Production of structured lipids by acidolysis of an EPA-enriched fish oil and caprylic acid in a packed bed reactor: analysis of three different operation modes. González Moreno PA; Robles Medina A; Camacho Rubio F; Camacho Páez B; Molina Grima E Biotechnol Prog; 2004; 20(4):1044-52. PubMed ID: 15296428 [TBL] [Abstract][Full Text] [Related]
16. Activation of Candida rugosa lipase at alkane-aqueous interfaces: a molecular dynamics study. James JJ; Lakshmi BS; Seshasayee AS; Gautam P FEBS Lett; 2007 Sep; 581(23):4377-83. PubMed ID: 17765226 [TBL] [Abstract][Full Text] [Related]
17. Enrichment of eicosapentaenoic acid from sardine oil with Delta5-olefinic bond specific lipase from Bacillus licheniformis MTCC 6824. Chakraborty K; Paulraj R J Agric Food Chem; 2008 Feb; 56(4):1428-33. PubMed ID: 18237134 [TBL] [Abstract][Full Text] [Related]
18. Efficient hydrolysis of tuna oil by a surfactant-coated lipase in a two-phase system. Ko WC; Wang HJ; Hwang JS; Hsieh CW J Agric Food Chem; 2006 Mar; 54(5):1849-53. PubMed ID: 16506843 [TBL] [Abstract][Full Text] [Related]
19. Strategy to Overcome Effect of Raw Materials on Enzymatic Process of Biodiesel from Non-edible Oils Using Candida sp. 99-125 Lipase. Nie K; Wang F; Tan T; Liu L Appl Biochem Biotechnol; 2015 Nov; 177(5):1176-85. PubMed ID: 26280803 [TBL] [Abstract][Full Text] [Related]
20. Rigorous kinetic model considering positional specificity of lipase for enzymatic stepwise hydrolysis of triolein in biphasic oil-water system. Hermansyah H; Wijanarko A; Kubo M; Shibasaki-Kitakawa N; Yonemoto T Bioprocess Biosyst Eng; 2010 Sep; 33(7):787-96. PubMed ID: 20024663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]