These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 12115125)

  • 21. Hydrodynamic dispersion within porous biofilms.
    Davit Y; Byrne H; Osborne J; Pitt-Francis J; Gavaghan D; Quintard M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012718. PubMed ID: 23410370
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Illuminating reactive microbial transport in saturated porous media: demonstration of a visualization method and conceptual transport model.
    Oates PM; Castenson C; Harvey CF; Polz M; Culligan P
    J Contam Hydrol; 2005 May; 77(4):233-45. PubMed ID: 15854718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transport of Escherichia coli and solutes during waste water infiltration in an urban alluvial aquifer.
    Foppen JW; van Herwerden M; Kebtie M; Noman A; Schijven JF; Stuyfzand PJ; Uhlenbrook S
    J Contam Hydrol; 2008 Jan; 95(1-2):1-16. PubMed ID: 17854950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pore-network modeling of biofilm evolution in porous media.
    Ezeuko CC; Sen A; Grigoryan A; Gates ID
    Biotechnol Bioeng; 2011 Oct; 108(10):2413-23. PubMed ID: 21520022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-dimensional patterns in bacterial veils arise from self-generated, three-dimensional fluid flows.
    Cogan NG; Wolgemuth CW
    Bull Math Biol; 2011 Jan; 73(1):212-29. PubMed ID: 20376573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transverse mixing enhancement due to bacterial random motility in porous microfluidic devices.
    Singh R; Olson MS
    Environ Sci Technol; 2011 Oct; 45(20):8780-7. PubMed ID: 21877703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quasielastic light scattering from migrating chemotactic bands of Escherichia coli. II. Analysis of anisotropic bacterial motions.
    Wang PC; Chen SH
    Biophys J; 1981 Oct; 36(1):203-19. PubMed ID: 7025930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of pore-scale heterogeneity and transverse mixing on bacterial growth in porous media.
    Zhang C; Kang Q; Wang X; Zilles JL; Müller RH; Werth CJ
    Environ Sci Technol; 2010 Apr; 44(8):3085-92. PubMed ID: 20192171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determining straining of Escherichia coli from breakthrough curves.
    Foppen JW; Mporokoso A; Schijven JF
    J Contam Hydrol; 2005 Feb; 76(3-4):191-210. PubMed ID: 15683880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacterial chemotaxis transverse to axial flow in a microfluidic channel.
    Lanning LM; Ford RM; Long T
    Biotechnol Bioeng; 2008 Jul; 100(4):653-63. PubMed ID: 18306417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anomalous transport of colloids and solutes in a shear zone.
    Kosakowski G
    J Contam Hydrol; 2004 Aug; 72(1-4):23-46. PubMed ID: 15240165
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mathematical models for motile bacterial transport in cylindrical tubes.
    Chen KC; Ford RM; Cummings PT
    J Theor Biol; 1998 Dec; 195(4):481-504. PubMed ID: 9837704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances.
    Pang L; Close M; Goltz M; Noonan M; Sinton L
    J Contam Hydrol; 2005 Apr; 77(3):165-94. PubMed ID: 15763354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-fluid model of biofilm disinfection.
    Cogan NG
    Bull Math Biol; 2008 Apr; 70(3):800-19. PubMed ID: 18071827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mobility of multiwalled carbon nanotubes in porous media.
    Liu X; O'Carroll DM; Petersen EJ; Huang Q; Anderson CL
    Environ Sci Technol; 2009 Nov; 43(21):8153-8. PubMed ID: 19924937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parameter and observation importance in modelling virus transport in saturated porous media-investigations in a homogenous system.
    Barth GR; Hill MC
    J Contam Hydrol; 2005 Nov; 80(3-4):107-29. PubMed ID: 16202474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering.
    Williams KA; Saini S; Wick TM
    Biotechnol Prog; 2002; 18(5):951-63. PubMed ID: 12363345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative analysis of experiments on bacterial chemotaxis to naphthalene.
    Pedit JA; Marx RB; Miller CT; Aitken MD
    Biotechnol Bioeng; 2002 Jun; 78(6):626-34. PubMed ID: 11992528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aqueous films limit bacterial cell motility and colony expansion on partially saturated rough surfaces.
    Wang G; Or D
    Environ Microbiol; 2010 May; 12(5):1363-73. PubMed ID: 20192969
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced transverse migration of bacteria by chemotaxis in a porous T-sensor.
    Long T; Ford RM
    Environ Sci Technol; 2009 Mar; 43(5):1546-52. PubMed ID: 19350933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.