BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12115758)

  • 1. Preparation of macroporous biodegradable PLGA scaffolds for cell attachment with the use of mixed salts as porogen additives.
    Lin HR; Kuo CJ; Yang CY; Shaw SY; Wu YJ
    J Biomed Mater Res; 2002; 63(3):271-9. PubMed ID: 12115758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering.
    Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS
    Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of in vitro spermatogenesis using poly(D,L-lactic-co-glycolic acid) (PLGA)-based macroporous biodegradable scaffolds.
    Lee JH; Oh JH; Lee JH; Kim MR; Min CK
    J Tissue Eng Regen Med; 2011 Feb; 5(2):130-7. PubMed ID: 20603864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity.
    Kim SS; Ahn KM; Park MS; Lee JH; Choi CY; Kim BS
    J Biomed Mater Res A; 2007 Jan; 80(1):206-15. PubMed ID: 17072849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering.
    Yoo HS; Lee EA; Yoon JJ; Park TG
    Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a biodegradable scaffold with interconnected pores by heat fusion and its application to bone tissue engineering.
    Shin M; Abukawa H; Troulis MJ; Vacanti JP
    J Biomed Mater Res A; 2008 Mar; 84(3):702-9. PubMed ID: 17635029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds.
    Huang YX; Ren J; Chen C; Ren TB; Zhou XY
    J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold.
    Jeon O; Song SJ; Kang SW; Putnam AJ; Kim BS
    Biomaterials; 2007 Jun; 28(17):2763-71. PubMed ID: 17350678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of isolated mature osteoblasts in abundance acts as desired-shaped bone regeneration in combination with a modified poly-DL-lactic-co-glycolic acid (PLGA)-collagen sponge.
    Ochi K; Chen G; Ushida T; Gojo S; Segawa K; Tai H; Ueno K; Ohkawa H; Mori T; Yamaguchi A; Toyama Y; Hata J; Umezawa A
    J Cell Physiol; 2003 Jan; 194(1):45-53. PubMed ID: 12447988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications.
    Pattison MA; Wurster S; Webster TJ; Haberstroh KM
    Biomaterials; 2005 May; 26(15):2491-500. PubMed ID: 15585251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response.
    Koegler WS; Griffith LG
    Biomaterials; 2004 Jun; 25(14):2819-30. PubMed ID: 14962560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of composition, solvent, and salt particles on the physicochemical properties of polyglycolide/poly(lactide-co-glycolide) scaffolds.
    Kuo YC; Leou SN
    Biotechnol Prog; 2006; 22(6):1664-70. PubMed ID: 17137316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Custom-shaping system for bone regeneration by seeding marrow stromal cells onto a web-like biodegradable hybrid sheet.
    Tsuchiya K; Mori T; Chen G; Ushida T; Tateishi T; Matsuno T; Sakamoto M; Umezawa A
    Cell Tissue Res; 2004 May; 316(2):141-53. PubMed ID: 14999559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds.
    Ren T; Ren J; Jia X; Pan K
    J Biomed Mater Res A; 2005 Sep; 74(4):562-9. PubMed ID: 16025492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyester scaffolds with bimodal pore size distribution for tissue engineering.
    Sosnowski S; Woźniak P; Lewandowska-Szumieł M
    Macromol Biosci; 2006 Jun; 6(6):425-34. PubMed ID: 16761274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.
    Huang X; Miao X
    J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.