These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12115758)

  • 21. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A "room-temperature" injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds.
    Wu L; Jing D; Ding J
    Biomaterials; 2006 Jan; 27(2):185-91. PubMed ID: 16098580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds.
    Park GE; Pattison MA; Park K; Webster TJ
    Biomaterials; 2005 Jun; 26(16):3075-82. PubMed ID: 15603802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characteristics of tissue-engineered cartilage on macroporous biodegradable PLGA scaffold.
    Baek CH; Ko YJ
    Laryngoscope; 2006 Oct; 116(10):1829-34. PubMed ID: 17016212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tissue-engineered cartilage on biodegradable macroporous scaffolds: cell shape and phenotypic expression.
    Baek CH; Lee JC; Jung YG; Ko YJ; Yoon JJ; Park TG
    Laryngoscope; 2002 Jun; 112(6):1050-5. PubMed ID: 12160272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA.
    Nie H; Wang CH
    J Control Release; 2007 Jul; 120(1-2):111-21. PubMed ID: 17512077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Injectable poly(lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering.
    Krebs MD; Sutter KA; Lin AS; Guldberg RE; Alsberg E
    Acta Biomater; 2009 Oct; 5(8):2847-59. PubMed ID: 19446056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth and metabolism of human hepatocytes on biomodified collagen poly(lactic-co-glycolic acid) three-dimensional scaffold.
    Li J; Li L; Yu H; Cao H; Gao C; Gong Y
    ASAIO J; 2006; 52(3):321-7. PubMed ID: 16760723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive.
    Nam YS; Yoon JJ; Park TG
    J Biomed Mater Res; 2000; 53(1):1-7. PubMed ID: 10634946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resorbable polymeric scaffolds for bone tissue engineering: the influence of their microstructure on the growth of human osteoblast-like MG 63 cells.
    Pamula E; Filová E; Bacáková L; Lisá V; Adamczyk D
    J Biomed Mater Res A; 2009 May; 89(2):432-43. PubMed ID: 18431773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tissue engineering scaffolds based on photocured dimethacrylate polymers for in vitro optical imaging.
    Landis FA; Stephens JS; Cooper JA; Cicerone MT; Lin-Gibson S
    Biomacromolecules; 2006 Jun; 7(6):1751-7. PubMed ID: 16768394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solvent effects on the microstructure and properties of 75/25 poly(D,L-lactide-co-glycolide) tissue scaffolds.
    Sander EA; Alb AM; Nauman EA; Reed WF; Dee KC
    J Biomed Mater Res A; 2004 Sep; 70(3):506-13. PubMed ID: 15293325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair.
    Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA
    Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering.
    Jiang T; Abdel-Fattah WI; Laurencin CT
    Biomaterials; 2006 Oct; 27(28):4894-903. PubMed ID: 16762408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of architecture on degradation and tissue ingrowth into three-dimensional poly(lactic-co-glycolic acid) scaffolds in vitro and in vivo.
    Cao Y; Mitchell G; Messina A; Price L; Thompson E; Penington A; Morrison W; O'Connor A; Stevens G; Cooper-White J
    Biomaterials; 2006 May; 27(14):2854-64. PubMed ID: 16426678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A PLGA membrane controlling cell behaviour for promoting tissue regeneration.
    Owen GR; Jackson J; Chehroudi B; Burt H; Brunette DM
    Biomaterials; 2005 Dec; 26(35):7447-56. PubMed ID: 16039709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y; Yang J; Khan S; Anissian L; Ameer GA
    J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The construction of three-dimensional micro-fluidic scaffolds of biodegradable polymers by solvent vapor based bonding of micro-molded layers.
    Ryu W; Min SW; Hammerick KE; Vyakarnam M; Greco RS; Prinz FB; Fasching RJ
    Biomaterials; 2007 Feb; 28(6):1174-84. PubMed ID: 17126395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.