These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 12115805)
1. Effects of low-frequency ultrasound on the transdermal permeation of mannitol: comparative studies with in vivo and in vitro skin. Tang H; Blankschtein D; Langer R J Pharm Sci; 2002 Aug; 91(8):1776-94. PubMed ID: 12115805 [TBL] [Abstract][Full Text] [Related]
2. Theoretical description of transdermal transport of hydrophilic permeants: application to low-frequency sonophoresis. Tang H; Mitragotri S; Blankschtein D; Langer R J Pharm Sci; 2001 May; 90(5):545-68. PubMed ID: 11288100 [TBL] [Abstract][Full Text] [Related]
3. Description of transdermal transport of hydrophilic solutes during low-frequency sonophoresis based on a modified porous pathway model. Tezel A; Sens A; Mitragotri S J Pharm Sci; 2003 Feb; 92(2):381-93. PubMed ID: 12532387 [TBL] [Abstract][Full Text] [Related]
4. Prediction of steady-state skin permeabilities of polar and nonpolar permeants across excised pig skin based on measurements of transient diffusion: characterization of hydration effects on the skin porous pathway. Tang H; Blankschtein D; Langer R J Pharm Sci; 2002 Aug; 91(8):1891-907. PubMed ID: 12115816 [TBL] [Abstract][Full Text] [Related]
5. An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport. Tang H; Wang CC; Blankschtein D; Langer R Pharm Res; 2002 Aug; 19(8):1160-9. PubMed ID: 12240942 [TBL] [Abstract][Full Text] [Related]
6. Effects of ultrasound and sodium lauryl sulfate on the transdermal delivery of hydrophilic permeants: Comparative in vitro studies with full-thickness and split-thickness pig and human skin. Seto JE; Polat BE; Lopez RF; Blankschtein D; Langer R J Control Release; 2010 Jul; 145(1):26-32. PubMed ID: 20346994 [TBL] [Abstract][Full Text] [Related]
7. Frequency and thermal effects on the enhancement of transdermal transport by sonophoresis. Merino G; Kalia YN; Delgado-Charro MB; Potts RO; Guy RH J Control Release; 2003 Feb; 88(1):85-94. PubMed ID: 12586506 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the porosity, the tortuosity, and the hindrance factor for the transdermal delivery of hydrophilic permeants in the context of the aqueous pore pathway hypothesis using dual-radiolabeled permeability experiments. Kushner J; Blankschtein D; Langer R J Pharm Sci; 2007 Dec; 96(12):3263-82. PubMed ID: 17887176 [TBL] [Abstract][Full Text] [Related]
9. Porous resins as a cavitation enhancer for low-frequency sonophoresis. Terahara T; Mitragotri S; Langer R J Pharm Sci; 2002 Mar; 91(3):753-9. PubMed ID: 11920760 [TBL] [Abstract][Full Text] [Related]
10. A theoretical analysis of low-frequency sonophoresis: dependence of transdermal transport pathways on frequency and energy density. Tezel A; Sens A; Mitragotri S Pharm Res; 2002 Dec; 19(12):1841-6. PubMed ID: 12523663 [TBL] [Abstract][Full Text] [Related]
11. Determination of threshold energy dose for ultrasound-induced transdermal drug transport. Mitragotri S; Farrell J; Tang H; Terahara T; Kost J; Langer R J Control Release; 2000 Jan; 63(1-2):41-52. PubMed ID: 10640579 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of constant current alternating current iontophoresis for transdermal drug delivery. Yan G; Li SK; Higuchi WI J Control Release; 2005 Dec; 110(1):141-50. PubMed ID: 16289410 [TBL] [Abstract][Full Text] [Related]
13. Synergistic effect of low-frequency ultrasound and sodium lauryl sulfate on transdermal transport. Mitragotri S; Ray D; Farrell J; Tang H; Yu B; Kost J; Blankschtein D; Langer R J Pharm Sci; 2000 Jul; 89(7):892-900. PubMed ID: 10861590 [TBL] [Abstract][Full Text] [Related]
14. Dependence of low-frequency sonophoresis on ultrasound parameters; distance of the horn and intensity. Terahara T; Mitragotri S; Kost J; Langer R Int J Pharm; 2002 Mar; 235(1-2):35-42. PubMed ID: 11879737 [TBL] [Abstract][Full Text] [Related]
15. Low-frequency sonophoresis: application to the transdermal delivery of macromolecules and hydrophilic drugs. Polat BE; Blankschtein D; Langer R Expert Opin Drug Deliv; 2010 Dec; 7(12):1415-32. PubMed ID: 21118031 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic studies of flux variability of neutral and ionic permeants during constant current dc iontophoresis with human epidermal membrane. Li SK; Higuchi WI; Kochambilli RP; Zhu H Int J Pharm; 2004 Apr; 273(1-2):9-22. PubMed ID: 15010125 [TBL] [Abstract][Full Text] [Related]
17. Skin permeability enhancement by low frequency sonophoresis: lipid extraction and transport pathways. Alvarez-Román R; Merino G; Kalia YN; Naik A; Guy RH J Pharm Sci; 2003 Jun; 92(6):1138-46. PubMed ID: 12761803 [TBL] [Abstract][Full Text] [Related]
18. Application of the aqueous porous pathway model to quantify the effect of sodium lauryl sulfate on ultrasound-induced skin structural perturbation. Polat BE; Seto JE; Blankschtein D; Langer R J Pharm Sci; 2011 Apr; 100(4):1387-97. PubMed ID: 20963845 [TBL] [Abstract][Full Text] [Related]
19. Incorporation of lipophilic pathways into the porous pathway model for describing skin permeabilization during low-frequency sonophoresis. Tezel A; Sens A; Mitragotri S J Control Release; 2002 Sep; 83(1):183-8. PubMed ID: 12220849 [TBL] [Abstract][Full Text] [Related]
20. Transport behavior of hairless mouse skin during constant current DC iontophoresis I: baseline studies. Liddell MR; Li SK; Higuchi WI J Pharm Sci; 2011 Apr; 100(4):1475-87. PubMed ID: 21259234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]