BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 12115903)

  • 1. Acid-base regulation in fishes: cellular and molecular mechanisms.
    Claiborne JB; Edwards SL; Morrison-Shetlar AI
    J Exp Zool; 2002 Aug; 293(3):302-19. PubMed ID: 12115903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of environmental hypercapnia and salinity on the expression of NHE-like isoforms in the gills of a euryhaline fish (Fundulus heteroclitus).
    Edwards SL; Wall BP; Morrison-Shetlar A; Sligh S; Weakley JC; Claiborne JB
    J Exp Zool A Comp Exp Biol; 2005 Jun; 303(6):464-75. PubMed ID: 15880778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell signaling and ion transport across the fish gill epithelium.
    Evans DH
    J Exp Zool; 2002 Aug; 293(3):336-47. PubMed ID: 12115905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ammonia excretion and urea handling by fish gills: present understanding and future research challenges.
    Wilkie MP
    J Exp Zool; 2002 Aug; 293(3):284-301. PubMed ID: 12115902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical considerations underlying Na(+) uptake mechanisms in freshwater fishes.
    Parks SK; Tresguerres M; Goss GG
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Nov; 148(4):411-8. PubMed ID: 18420463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins.
    Wright PA; Wood CM
    J Exp Biol; 2009 Aug; 212(Pt 15):2303-12. PubMed ID: 19617422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid-base balance and CO2 excretion in fish: unanswered questions and emerging models.
    Perry SF; Gilmour KM
    Respir Physiol Neurobiol; 2006 Nov; 154(1-2):199-215. PubMed ID: 16777496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Channels, pumps, and exchangers in the gill and kidney of freshwater fishes: their role in ionic and acid-base regulation.
    Perry SF; Shahsavarani A; Georgalis T; Bayaa M; Furimsky M; Thomas SL
    J Exp Zool A Comp Exp Biol; 2003 Nov; 300(1):53-62. PubMed ID: 14598386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+/H+ antiporter, V-H+-ATPase and Na+/K+-ATPase immunolocalization in a marine teleost (Myoxocephalus octodecemspinosus).
    Catches JS; Burns JM; Edwards SL; Claiborne JB
    J Exp Biol; 2006 Sep; 209(Pt 17):3440-7. PubMed ID: 16916979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na(+), Cl(-), Ca(2+) and Zn(2+) transport by fish gills: retrospective review and prospective synthesis.
    Marshall WS
    J Exp Zool; 2002 Aug; 293(3):264-83. PubMed ID: 12115901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Branchial expression and localization of SLC9A2 and SLC9A3 sodium/hydrogen exchangers and their possible role in acid-base regulation in freshwater rainbow trout (Oncorhynchus mykiss).
    Ivanis G; Esbaugh AJ; Perry SF
    J Exp Biol; 2008 Aug; 211(Pt 15):2467-77. PubMed ID: 18626081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of ion and acid-base regulation at the gills of freshwater fish.
    Goss GG; Perry SF; Wood CM; Laurent P
    J Exp Zool; 1992 Aug; 263(2):143-59. PubMed ID: 1500882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chloride cell: structure and function in the gills of freshwater fishes.
    Perry SF
    Annu Rev Physiol; 1997; 59():325-47. PubMed ID: 9074767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ammonia transport in cultured gill epithelium of freshwater rainbow trout: the importance of Rhesus glycoproteins and the presence of an apical Na+/NH4+ exchange complex.
    Tsui TK; Hung CY; Nawata CM; Wilson JM; Wright PA; Wood CM
    J Exp Biol; 2009 Mar; 212(Pt 6):878-92. PubMed ID: 19252005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apical structures of "mitochondria-rich" alpha and beta cells in euryhaline fish gill: their behaviour in various living conditions.
    Pisam M; Le Moal C; Auperin B; Prunet P; Rambourg A
    Anat Rec; 1995 Jan; 241(1):13-24. PubMed ID: 7879919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of branchial V-H(+)-ATPase, Na(+)/K(+)-ATPase and NHE2 in response to acid and base infusions in the Pacific spiny dogfish (Squalus acanthias).
    Tresguerres M; Katoh F; Fenton H; Jasinska E; Goss GG
    J Exp Biol; 2005 Jan; 208(Pt 2):345-54. PubMed ID: 15634853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste.
    Evans DH; Piermarini PM; Choe KP
    Physiol Rev; 2005 Jan; 85(1):97-177. PubMed ID: 15618479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion uptake and acid secretion in zebrafish (Danio rerio).
    Hwang PP
    J Exp Biol; 2009 Jun; 212(Pt 11):1745-52. PubMed ID: 19448083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into fish ion regulation and mitochondrion-rich cells.
    Hwang PP; Lee TH
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):479-97. PubMed ID: 17689996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Branchial osmoregulation in the euryhaline bull shark, Carcharhinus leucas: a molecular analysis of ion transporters.
    Reilly BD; Cramp RL; Wilson JM; Campbell HA; Franklin CE
    J Exp Biol; 2011 Sep; 214(Pt 17):2883-95. PubMed ID: 21832131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.