BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 12115903)

  • 21. Characterization of ion channel and transporter mRNA expressions in isolated gill chloride and pavement cells of seawater acclimating eels.
    Tse WK; Au DW; Wong CK
    Biochem Biophys Res Commun; 2006 Aug; 346(4):1181-90. PubMed ID: 16793006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and function of ionocytes in the freshwater fish gill.
    Dymowska AK; Hwang PP; Goss GG
    Respir Physiol Neurobiol; 2012 Dec; 184(3):282-92. PubMed ID: 22981968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrastructural features of mitochondria-rich cells in stenohaline freshwater and seawater fishes.
    Pisam M; Boeuf G; Prunet P; Rambourg A
    Am J Anat; 1990 Jan; 187(1):21-31. PubMed ID: 2296908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Appearance of cuboidal cells in relation to salinity in gills of Fundulus heteroclitus, a species exhibiting branchial Na+ but not Cl- uptake in freshwater.
    Laurent P; Chevalier C; Wood CM
    Cell Tissue Res; 2006 Sep; 325(3):481-92. PubMed ID: 16639617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The putative mechanism of Na(+) absorption in euryhaline elasmobranchs exists in the gills of a stenohaline marine elasmobranch, Squalus acanthias.
    Choe KP; Edwards SL; Claiborne JB; Evans DH
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Feb; 146(2):155-62. PubMed ID: 17208025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of ontogenetic changes in branchial morphology on gill function in Arapaima gigas.
    Gonzalez RJ; Brauner CJ; Wang YX; Richards JG; Patrick ML; Xi W; Matey V; Val AL
    Physiol Biochem Zool; 2010; 83(2):322-32. PubMed ID: 20100089
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gill morphology and acid-base regulation in freshwater fishes.
    Goss GG; Perry SF; Fryer JN; Laurent P
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Jan; 119(1):107-15. PubMed ID: 11253774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish.
    Hiroi J; Yasumasu S; McCormick SD; Hwang PP; Kaneko T
    J Exp Biol; 2008 Aug; 211(Pt 16):2584-99. PubMed ID: 18689412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cationic pathway of pH regulation in larvae of Anopheles gambiae.
    Okech BA; Boudko DY; Linser PJ; Harvey WR
    J Exp Biol; 2008 Mar; 211(Pt 6):957-68. PubMed ID: 18310121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of acid-base regulation in the African lungfish Protopterus annectens.
    Gilmour KM; Euverman RM; Esbaugh AJ; Kenney L; Chew SF; Ip YK; Perry SF
    J Exp Biol; 2007 Jun; 210(Pt 11):1944-59. PubMed ID: 17515420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chloride uptake and base secretion in freshwater fish: a transepithelial ion-transport metabolon?
    Tresguerres M; Katoh F; Orr E; Parks SK; Goss GG
    Physiol Biochem Zool; 2006; 79(6):981-96. PubMed ID: 17041864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Does the presence of a seawater gill morphology induced by dietary salt loading affect Cl(-) uptake and acid-base regulation in freshwater rainbow trout Oncorhynchus mykiss.
    Perry SF; Rivero-Lopez L
    J Fish Biol; 2012 Feb; 80(2):301-11. PubMed ID: 22268431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellular composition and ultrastructure of the gill epithelium of larval and adult lampreys: implications for osmoregulation in fresh and seawater.
    Bartels H; Potter IC
    J Exp Biol; 2004 Sep; 207(Pt 20):3447-62. PubMed ID: 15339941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport.
    Scott GR; Claiborne JB; Edwards SL; Schulte PM; Wood CM
    J Exp Biol; 2005 Jul; 208(Pt 14):2719-29. PubMed ID: 16000541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immunolocalization of Na+/K+-ATPase, carbonic anhydrase II, and vacuolar H+-ATPase in the gills of freshwater adult lampreys, Geotria australis.
    Choe KP; O'Brien S; Evans DH; Toop T; Edwards SL
    J Exp Zool A Comp Exp Biol; 2004 Aug; 301(8):654-65. PubMed ID: 15286945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbonic anhydrase and acid-base regulation in fish.
    Gilmour KM; Perry SF
    J Exp Biol; 2009 Jun; 212(Pt 11):1647-61. PubMed ID: 19448075
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fish gill morphology: inside out.
    Wilson JM; Laurent P
    J Exp Zool; 2002 Aug; 293(3):192-213. PubMed ID: 12115897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Responses of gill mitochondria-rich cells in Mozambique tilapia exposed to acidic environments (pH 4.0) in combination with different salinities.
    Furukawa F; Watanabe S; Inokuchi M; Kaneko T
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Apr; 158(4):468-76. PubMed ID: 21147243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ion-motive ATPases and active, transbranchial NaCl uptake in the red freshwater crab, Dilocarcinus pagei (Decapoda, Trichodactylidae).
    Weihrauch D; McNamara JC; Towle DW; Onken H
    J Exp Biol; 2004 Dec; 207(Pt 26):4623-31. PubMed ID: 15579558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reciprocal expression of gill Na+/K+-ATPase alpha-subunit isoforms alpha1a and alpha1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance.
    Bystriansky JS; Richards JG; Schulte PM; Ballantyne JS
    J Exp Biol; 2006 May; 209(Pt 10):1848-58. PubMed ID: 16651551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.