BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 12115917)

  • 1. Elevated levels of trimethylamine oxide in deep-sea fish: evidence for synthesis and intertissue physiological importance.
    Treberg JR; Driedzic WR
    J Exp Zool; 2002 Jun; 293(1):39-45. PubMed ID: 12115917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of trimethylamine oxide and habitat depth within and among species of teleost fish: an analysis of causation.
    Samerotte AL; Drazen JC; Brand GL; Seibel BA; Yancey PH
    Physiol Biochem Zool; 2007; 80(2):197-208. PubMed ID: 17252516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreasing urea∶trimethylamine N-oxide ratios with depth in chondrichthyes: a physiological depth limit?
    Laxson CJ; Condon NE; Drazen JC; Yancey PH
    Physiol Biochem Zool; 2011; 84(5):494-505. PubMed ID: 21897086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature effects on trimethylamine oxide accumulation and the relationship between plasma concentration and tissue levels in smelt (Osmerus mordax).
    Treberg JR; Bystriansky JS; Driedzic WR
    J Exp Zool A Comp Exp Biol; 2005 Apr; 303(4):283-93. PubMed ID: 15776422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle enzyme activities in a deep-sea squaloid shark, Centroscyllium fabricii, compared with its shallow-living relative, Squalus acanthias.
    Treberg JR; Martin RA; Driedzic WR
    J Exp Zool A Comp Exp Biol; 2003 Dec; 300(2):133-9. PubMed ID: 14648673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The accumulation of methylamine counteracting solutes in elasmobranchs with differing levels of urea: a comparison of marine and freshwater species.
    Treberg JR; Speers-Roesch B; Piermarini PM; Ip YK; Ballantyne JS; Driedzic WR
    J Exp Biol; 2006 Mar; 209(Pt 5):860-70. PubMed ID: 16481575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trimethylamine oxide, betaine and other osmolytes in deep-sea animals: depth trends and effects on enzymes under hydrostatic pressure.
    Yancey PH; Rhea MD; Kemp KM; Bailey DM
    Cell Mol Biol (Noisy-le-grand); 2004 Jun; 50(4):371-6. PubMed ID: 15529747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High contents of trimethylamine oxide correlating with depth in deep-sea teleost fishes, skates, and decapod crustaceans.
    Kelly RH; Yancey PH
    Biol Bull; 1999 Feb; 196(1):18-25. PubMed ID: 25575382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TMAO (trimethylamine oxide)-independence of oxygen affinity and its urea and ATP sensitivities in an elasmobranch hemoglobin.
    Weber RE
    J Exp Zool; 1983 Dec; 228(3):551-4. PubMed ID: 6663264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urinary excretion of methylamines in men with varying intake of fish from the Baltic Sea.
    Svensson BG; Akesson B; Nilsson A; Paulsson K
    J Toxicol Environ Health; 1994 Apr; 41(4):411-20. PubMed ID: 8145282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osmolyte Adjustments as a Pressure Adaptation in Deep-Sea Chondrichthyan Fishes: An Intraspecific Test in Arctic Skates (Amblyraja hyperborea) along a Depth Gradient.
    Yancey PH; Speers-Roesch B; Atchinson S; Reist JD; Majewski AR; Treberg JR
    Physiol Biochem Zool; 2018; 91(2):788-796. PubMed ID: 29315031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaperone roles for TMAO and HSP70 during hyposmotic stress in the spiny dogfish shark (Squalus acanthias).
    MacLellan RJ; Tunnah L; Barnett D; Wright PA; MacCormack T; Currie S
    J Comp Physiol B; 2015 Oct; 185(7):729-40. PubMed ID: 26050212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TMAO and other organic osmolytes in the muscles of amphipods (Crustacea) from shallow and deep water of Lake Baikal.
    Zerbst-Boroffka I; Kamaltynow RM; Harjes S; Kinne-Saffran E; Gross J
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Sep; 142(1):58-64. PubMed ID: 16139539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trimethylamine oxide and urea synthesis in rainbow smelt and some other northern fishes.
    Raymond JA
    Physiol Zool; 1998; 71(5):515-23. PubMed ID: 9754528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Some peculiarities of brain phospholipids in deep sea fishes].
    Pomazanskaia LF; Pravdina NI; Chirkovskaia EV
    Zh Evol Biokhim Fiziol; 1975; 11(5):520-5. PubMed ID: 1217333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic capacity does not predict elasmobranchs' ability to maintain trimethylamine oxide without a dietary contribution.
    Bockus AB; Seibel BA
    Comp Biochem Physiol A Mol Integr Physiol; 2018 Mar; 217():35-42. PubMed ID: 29248570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying the key factors affecting the trimethylamine N-oxide content of teleost fishes collected from the marginal seas of China and the epipelagic zone of the northwest Pacific Ocean.
    Hu Q; Zhao W; Qu K; An N; Li L; Wei Y; Bai Y; Jiang T; Chen J; Dai F; Wang H; Cui Z
    Sci Total Environ; 2023 Nov; 901():165577. PubMed ID: 37467983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The little skate Raja erinacea exhibits an extrahepatic ornithine urea cycle in the muscle and modulates nitrogen metabolism during low-salinity challenge.
    Steele SL; Yancey PH; Wright PA
    Physiol Biochem Zool; 2005; 78(2):216-26. PubMed ID: 15778941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trimethylamine oxide stabilizes teleost and mammalian lactate dehydrogenases against inactivation by hydrostatic pressure and trypsinolysis.
    Yancey PH; Siebenaller JF
    J Exp Biol; 1999 Dec; 202(Pt 24):3597-603. PubMed ID: 10574736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proximate composition, fatty acid and lipid class composition of the muscle from deep-sea teleosts and elasmobranchs.
    Økland HM; Stoknes IS; Remme JF; Kjerstad M; Synnes M
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Mar; 140(3):437-43. PubMed ID: 15694592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.